



# Indira College of Engineering and Management an Autonomous Institute of Savitribai Phule Pune University, Pune Maharashtra, India

National Education Policy 2020 compliant Curriculum

# Second Year B. Tech (AI and DS) (With effect from 2025-26)

Indira Chanakya Campus(ICC)

S. No. 64,65, Gat No. 276 At Post: Parandwadi, Near Somatane phata, Tal.: Maval, Dist. Pune – 410 506

Phone No: 02114 - 661500 / 666

Email: info@indiraicem.ac.in





# Semester-III

|                             |                                                | Course                              | Teaching<br>Scheme |      |    |       |         |                    |          | <b>Evaluation Scheme</b> |                   |            |                |
|-----------------------------|------------------------------------------------|-------------------------------------|--------------------|------|----|-------|---------|--------------------|----------|--------------------------|-------------------|------------|----------------|
| Course Code                 | Name of Course                                 | Category (As<br>per NEP)            | L                  | Т    |    | Total | Credits | Theory TAE CAE ESE |          |                          | Practical INT EXT |            | Total<br>Marks |
| 24UAIL301                   | Data Engineering                               | Program Core<br>Course (PCC)        | 2                  | -    | -  | 2     | 2       | 10                 | 15       | 50                       | -                 | EAI        | 75             |
| 24UAIP301                   | Data Engineering                               | Program Core<br>Course (PCC)        | -                  | ુ =. | 4  | 4     | 2       | _                  | 20       | -                        | -                 | 25         | 25             |
| 24UAIL302 Data<br>Structure |                                                | Progra<br>m Core<br>Course<br>(PCC) | 2                  | 1    | 1  | 2     | 2       | 10                 | 15       | 50                       | •                 | -          | 75             |
| 24UAIP302                   | Data Structure                                 | Progra<br>m Core<br>Course<br>(PCC) | -                  | •    | 2  | 2     | 1       | -                  | <b>-</b> | -                        | -                 | 25         | 25             |
| 24UAIL303                   | Agile Engineering<br>and Project<br>Management | Program Core<br>Course (PCC)        | 3                  | I    | 10 | 3     | 3       | :=:                | -        | 50                       | -                 | :F         | 50             |
| 24UAIXXX<br>X               |                                                | Multidisciplina<br>ry<br>Minor-I    | 2                  | 1    | 1  | 2     | 2       | 10                 | 15       | 25                       |                   |            | 50             |
| 24UXXXX<br>XX               | Open Elective-I                                | Open<br>Elective(OE                 | 3                  |      | 1  | 3     | 3       | 10                 | 15       | 50                       |                   | 12         | 75             |
| 24UXXXX<br>XX               | Open Elective-I                                | Open<br>Elective(OE                 | 3                  | ×.   | 2  | 2     | 1       |                    | -        | -                        | 25                | <b>(F)</b> | 25             |
| 24UESP305                   | Entrepreneurship<br>Essentials I               | Entrepreneu<br>rship                | -                  | -    | 4  | 4     | 2       | -                  | -        | -                        | 25                | -          | 25             |
| 24UVEP306                   | VEC -I<br>(Understanding India)                | Value<br>Education<br>(VEC-I)       |                    | -    | 4  | 4     | 2       | _                  | -        | -                        | 25                | -          | 25             |
| 24UAIP303                   | Animated AI                                    | Field Project-I                     | 3                  | -    | 4  | 4     | 2       | -                  | -        | -                        | 25                | 25         | 50             |
|                             | Total                                          |                                     | 12                 | -    | 20 | 32    | 22      | 40                 | 60       | 225                      | 100               | 75         | 500            |

Dr. Manjusha Tatiya BOS Chairman

Dr. Nilesh Uke Director



Dr. Saurabh Gupta

Dean Academics

Dr. Neha Sharma VC Nominee





# Semester-IV

|             |                                                   | Course                                            |                  | Teaching<br>Scheme |                 |       | Cred<br>its | Evaluation Scheme |              |     |           |                |                |
|-------------|---------------------------------------------------|---------------------------------------------------|------------------|--------------------|-----------------|-------|-------------|-------------------|--------------|-----|-----------|----------------|----------------|
| Course Code | Name of<br>Course                                 | Category (As                                      | L                | LT                 | г Р То          | Total |             | Theory            |              |     | Practical |                | Total<br>Marks |
|             | Course                                            | per NEP)                                          | L                | 1                  | r               | Total |             | TAE               | CAE          | ESE | INT       | EXT            |                |
| 24UAIL401   | Feature<br>Engineering<br>(ML)                    | Program Core<br>Course (PCC)                      | 2                | -                  | u=              | 2     | 2           | 10                | 15           | 50  | -         | =              | 75             |
| 24UAIP401   | Feature<br>Engineering<br>(ML)                    | Program Core<br>Course (PCC)                      | 1. <del>5.</del> |                    | 4               | 4     | 2           | (6 <u>4</u> 2     | ( <u>a</u> ) | 1   | -         | 25             | 25             |
| 24UAIL402   | Industrial IoT                                    | Program Core<br>Course (PCC)                      | 2                | -                  |                 | 2     | 2           | 10                | 15           | 50  | -         | -              | 75             |
| 24UAIP402   | Industrial IoT                                    | Program Core<br>Course (PCC)                      | S                |                    | 2               | 2     | 1           | 84                | -            | -   | -         | 25             | 25             |
| 24UAIP403   | Statistics and Probability                        | Program Core<br>Course (PCC)                      | 2                | 1                  | -               | 3     | 3           | 10                | 15           | 50  | -         | <del>5</del> 0 | 75             |
| 24UAIXXXX   | Minor –II                                         | Multidisciplinary<br>Minor-II                     | 2                | -                  |                 | 2     | 2           | 10                | 15           | 25  | _         | 20             | 50             |
| 24UXXXXXX   | Open<br>Elective -II                              | Open<br>Elective(OE)                              | 2                | -                  | :: <del>-</del> | 2     | 2           | 10                | 15           | 25  | -         | -              | 50             |
| 24UAIP404   | SEC-III<br>(CI/CD)                                | Vocational & Skill<br>Enhancement<br>Course (VSC) | -                | -                  | 4               | 4     | 2           |                   | •            | 18) | 25        | -              | 25             |
| 24UBSP407   | Modern<br>Office<br>(Life<br>Skill)<br>Management | Ability<br>Enhancement<br>Course<br>(AEC-I)       | -                | -                  | 4               | 4     | 2           | =                 |              | -   | 25        | -              | 25             |
| 24UESP408   | Entrepreneurs<br>hip Essentials<br>II             | Entrepreneurship                                  | -                | -                  | 4               | 4     | 2           | -                 | -            |     | 25        | -              | 25             |
| 24UVEP409   | VEC II<br>(Environme<br>nt<br>Awareness)          | Value Education<br>Course (VEC)                   | -                | -                  | 4               | 4     | 2           | 10                | 15           | -   | 25        | -              | 50             |
|             | Total                                             |                                                   | 10               | 1                  | 22              | 33    | 22          | 60                | 90           | 200 | 100       | 50             | 500            |

Dr. Manjusha Tatiya BOS Chairman

Dr. Nilesh Uke Director



Dr. Saurabh Gupta

Dean Academics

Dr. Neha Sharma VC Nominee

# Semester III



001

|         | Indira College of Engineering and Management (An autonomous Institute)            |         |        |             |           |           |  |  |  |
|---------|-----------------------------------------------------------------------------------|---------|--------|-------------|-----------|-----------|--|--|--|
| S       | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |        |             |           |           |  |  |  |
| Course  | Data Engineering Code                                                             |         |        |             | 24UAIL301 |           |  |  |  |
| Credits | 2                                                                                 | Pr/week |        | Evaluation  | Theory    | Practical |  |  |  |
|         |                                                                                   |         | Scheme | TAE/CAE/ESE | INT/EXT   |           |  |  |  |
|         |                                                                                   | Th/week | 2      |             | 10/15/50  |           |  |  |  |

**Prerequisite:** Basic knowledge of python programming Basic understanding of data structure

# **Course Objective:**

| 1 | To introduce fundamental concepts of databases, including relational and NoSQL          |
|---|-----------------------------------------------------------------------------------------|
|   | databases.                                                                              |
| 2 | To enable students to write SQL queries for data retrieval and manipulation.            |
| 3 | To familiarize students with ETL (Extract, Transform, Load) processes and data          |
|   | pipelines.                                                                              |
| 4 | To introduce distributed data processing using Hadoop and Spark.                        |
| 5 | To prepare students for applying data engineering techniques in AI and ML applications. |

| CO  | CO statement                                                 | Bloom's Level   |
|-----|--------------------------------------------------------------|-----------------|
| CO1 | Describe database fundamentals, relational models, and       | Understand (L2) |
|     | NoSQL databases.                                             |                 |
| CO2 | Construct SQL queries for data retrieval, filtering, and     | Apply (L3)      |
|     | manipulation                                                 |                 |
| CO3 | Develop relational and NoSQL database models for structured  | Create (L6)     |
|     | and unstructured data.                                       |                 |
| CO4 | Evaluate distributed data processing techniques using Hadoop | Evaluate (L5)   |
|     | and Spark.                                                   |                 |
| CO5 | Apply data engineering concepts in AI/ML pipelines.          | Apply (L3)      |



| Unit-1  | Introduction to Databases and SQL                                  | (6 Hours) |  |  |  |
|---------|--------------------------------------------------------------------|-----------|--|--|--|
|         | Basics of Data, Databases, and Data Models,                        |           |  |  |  |
|         | Introduction to Relational Databases (RDBMS), Entity-Relationship  |           |  |  |  |
|         | (ER) Modeling, SQL Basics: Creating, Inserting, Updating, Deleting |           |  |  |  |
|         | Data, SQL Queries: Filtering, Aggregations, Joins,                 |           |  |  |  |
|         | Hands-on: Writing Basic SQL Queries on MySQL/PostgreSQL,           |           |  |  |  |
| Unit-2  | NoSQL Databases and Data Storage                                   | (6 Hours) |  |  |  |
|         | Limitations of Relational Databases,                               |           |  |  |  |
|         | Introduction to NoSQL Databases: Document, Key-Value, Columnar,    |           |  |  |  |
|         | Graph                                                              |           |  |  |  |
|         | MongoDB: Data Model, CRUD Operations, Indexing                     |           |  |  |  |
| Unit- 3 | Data Engineering & ETL Pipelines                                   |           |  |  |  |
|         | Introduction to Data Engineering and Data Pipelines                |           |  |  |  |
|         | ETL vs ELT: Concepts and Implementations                           |           |  |  |  |
|         | Tools for ETL: Apache NiFi, Apache Airflow, Talend                 |           |  |  |  |
|         | Data Cleaning and Transformation Techniques                        |           |  |  |  |
|         | Hands-on: Building ETL Pipeline using Python (Pandas & SQL         |           |  |  |  |
|         | Alchemy)                                                           |           |  |  |  |
| Unit- 4 | Big Data and Distributed Processing                                | (6 Hours) |  |  |  |
|         | Introduction to Big Data and Distributed Computing                 |           |  |  |  |
|         | Apache Hadoop: HDFS, Map Reduce                                    |           |  |  |  |
|         | Apache Spark: Architecture, RDDs, Data Frames                      |           |  |  |  |
| Unit- 5 | Data Engineering for AI & ML                                       |           |  |  |  |
|         | Data Engineering for Machine Learning: Feature Engineering & Data  |           |  |  |  |
|         | Preprocessing                                                      |           |  |  |  |
|         | Data Pipelines for AI/ML Models                                    |           |  |  |  |
|         | MLOps: Automating AI Pipelines                                     |           |  |  |  |





001

#### **Reference Book**

- 1. C J Date, "An Introduction to Database Systems", Addison-Wesley, ISBN: 0201144719
- 2. Adam Fowler, "NoSQL For Dummies", John Wiley & Sons, ISBN-1118905628
- 3. Yupo Chan, John Talburt, and Terry M. Talley, "Data Engineering: Mining, Information and Intelligence", ISBN-10: 1441901750, ISBN-13: 978-1441901750.

#### **Text Book**

- 1. Silberschatz A., Korth H., Sudarshan S., "Database System Concepts", McGraw Hill Publishers, ISBN 0-07-120413-X, 6th edition
- 2. Connally T, Begg C., "Database Systems", Pearson Education, ISBN 81-7808-861-4
- 3. Pramod J. Sadalage and Martin Fowler, "NoSQL Distilled", Addison Wesley, ISBN-10: 0321826620, ISBN-13: 978-0321826626
- 4. Joe Reis and Matt Housley, "Fundamentals of Data Engineering: Plan and Build Robust Data Systems" O'Reilly, ISBN-10: 1098108302, ISBN-13: 978-1098108304.

#### E Book

- 1. "The Big Book of Data Engineering" by Databricks
- 2. "Fundamentals of Data Engineering" by Joe Reis and Matt Housley

#### E-Links

1. http://www.nptelvideos.com/lecture.php?id=6518





001

| ]       | Indira College of Engineering and Management (An autonomous Institute)            |         |   |            |             |           |  |  |  |
|---------|-----------------------------------------------------------------------------------|---------|---|------------|-------------|-----------|--|--|--|
| Sec     | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |             |           |  |  |  |
| Course  | Data Engineering                                                                  |         |   | Code       | 24UAIP301   |           |  |  |  |
| Credits | 2                                                                                 | Pr/week | 4 | Evaluation | Theory      | Practical |  |  |  |
|         |                                                                                   |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |  |  |  |
|         |                                                                                   | Th/week |   |            |             | /25       |  |  |  |

Prerequisite: Basic knowledge of python programming

# **Course Objective:**

| 1 | To introduce students to structured query language (SQL) and NoSQL databases          |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------|--|--|--|--|--|
|   | for data manipulation and retrieval.                                                  |  |  |  |  |  |
| 2 | To equip students with practical skills in database design, data extraction,          |  |  |  |  |  |
|   | transformation, and loading (ETL) processes.                                          |  |  |  |  |  |
| 3 | To enable students to write and execute advanced SQL and PL/SQL queries using         |  |  |  |  |  |
|   | control structures, joins, subqueries, and exception handling.                        |  |  |  |  |  |
| 4 | To familiarize students with MongoDB for working with unstructured and semi-          |  |  |  |  |  |
|   | structured data, including CRUD, aggregation, indexing, and map-reduce operations.    |  |  |  |  |  |
| 5 | To develop an understanding of data engineering tools like Pandas, SQLAlchemy,        |  |  |  |  |  |
|   | and Apache Spark for building efficient data pipelines and preparing data for machine |  |  |  |  |  |
|   | learning.                                                                             |  |  |  |  |  |

| CO  | CO statement                                                                                        | Bloom's Level            |
|-----|-----------------------------------------------------------------------------------------------------|--------------------------|
| CO1 | Apply SQL and PL/SQL concepts to design, create, manipulate, and query relational databases.        | Apply (Level 3)          |
| CO2 | Develop and execute MongoDB queries using CRUD operations, aggregation, indexing, and map-reduce.   | Apply & Analyze (L3-L4)  |
| CO3 | Implement data preprocessing, cleaning, and transformation using Python and Pandas.                 | Apply (Level 3)          |
| CO4 | Build end-to-end data pipelines and demonstrate automation using SQLAlchemy and Python libraries.   | Analyze & Create (L4-L6) |
| CO5 | Utilize Apache Spark RDDs and DataFrames to perform large-scale data processing on cloud platforms. | Analyze (Level 4)        |



| Listo | f Assignments/Practical's                                                                           |
|-------|-----------------------------------------------------------------------------------------------------|
| 1     | SQL Queries: Design and Develop SQL DDL statements which demonstrate the use                        |
| 1     | of SQL objects such as Table, View, Index, Sequence, Synonym, different constraints                 |
|       | etc.                                                                                                |
| 2     | Write at least 10 SQL queries on the suitable database application using SQL DML                    |
| -     | statements.                                                                                         |
|       | Note: Instructor will design the queries which demonstrate the use of concepts like                 |
|       | Insert, Select, Update, Delete with operators, functions, and set operator etc.                     |
|       | SQL Queries – all types of Join, Sub-Query and View:                                                |
| 3     | Write at least10 SQL queries for suitable database application using SQL DML                        |
|       | statements.                                                                                         |
|       | Note: Instructor will design the queries which demonstrate the use of concepts like                 |
|       | all types of Join, Sub-Query and View                                                               |
| 4     | MongoDB Queries: Design and Develop MongoDB Queries using CRUD operations.                          |
|       | (Use CRUD operations, SAVE method, logical operators etc.).                                         |
|       | ETL Vs ELT                                                                                          |
|       | Exporting and importing data                                                                        |
|       |                                                                                                     |
| 5     | Design and develop SQL DML statements to demonstrate exporting tables to external                   |
|       | files of different file formats ex. CSV, XLSX, TXT, etc.                                            |
|       |                                                                                                     |
| 6     | Design and develop SQL DML statements to demonstrate importing data from                            |
|       | external files of different file formats ex. CSV, XLSX, TXT, etc                                    |
|       | Unnamed PL/SQLcode block: Use of Control structure and Exception handling is                        |
|       | mandatory. Suggested Problem statement:                                                             |
| 7     | Consider                                                                                            |
| '     | Tables: 1. Borrower (Roll_no, Name, Date_of_Issue, Name_of_Book, Status)                            |
|       | Table 2. Fine (Roll_no, Date, Amt)                                                                  |
|       | Accept Roll_no and Name_of_Book from user.                                                          |
|       | <ul> <li>Check the number of days (from Date_of_Issue).</li> </ul>                                  |
|       | <ul> <li>If days are between 15 to 30 then fine amount will be Rs 5per day.</li> </ul>              |
|       | <ul> <li>If no. of days&gt;30, per day fine will be Rs 50 per day and for days less than</li> </ul> |
|       | 30, Rs. 5 per day.                                                                                  |
|       | <ul> <li>After submitting the book, status will change from I to R.</li> </ul>                      |
|       | <ul> <li>If condition of fine is true, then details will be stored into fine table.</li> </ul>      |
|       | <ul> <li>Also handles the exception by named exception handler or user define</li> </ul>            |
|       | exception handler.                                                                                  |
|       | MongoDB – Aggregation and Indexing:                                                                 |
| 8     | Design and Develop MongoDB Queries using aggregation and indexing with suitable                     |
| 0     | example using MongoDB.                                                                              |
|       | MongoDB – Map-reduce operations:                                                                    |
|       | Trongone Trup reduce operations.                                                                    |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

| 9  | Implement Map-reduce operation with suitable example using MongoDB.                |
|----|------------------------------------------------------------------------------------|
|    |                                                                                    |
| 10 | Extracting CSV Data, Cleaning it with Pandas, and Loading it into SQLite using SQL |
|    | Alchemy                                                                            |
| 11 | Building a Mini Data Warehouse Pipeline using Python, Pandas & SQLAlchemy          |
|    | Introduction to Apache Spark –                                                     |
| 12 | Word Count using RDDs on Google Colab.                                             |
| 13 | Analyzing Structured Data Using Spark DataFrames on Google Colab                   |
|    | Feature Engineering & Data Preprocessing for ML Models                             |
| 14 | Preparing Titanic Dataset for Machine Learning using Scikit-learn Pipelines.       |
| 15 | End-to-End AI/ML Pipeline for Iris Dataset with Joblib Model Saving.               |





Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

| Indira College of Engineering and Management (An autonomous Institute)            |                |         |   |            |             |           |  |  |
|-----------------------------------------------------------------------------------|----------------|---------|---|------------|-------------|-----------|--|--|
| Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                |         |   |            |             |           |  |  |
| Course                                                                            | Data Structure |         |   | Code       | 24UAIL302   |           |  |  |
| Credits                                                                           | 2              | Pr/week |   | Evaluation | Theory      | Practical |  |  |
|                                                                                   |                |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |  |  |
|                                                                                   |                | Th/week | 2 |            | 10/15/50    |           |  |  |

Prerequisite: Basic knowledge of programming c, cpp, python

# **Course Objective:**

| 1 | To understand the fundamental concepts of data structures and their role in solving        |
|---|--------------------------------------------------------------------------------------------|
|   | problems in AI and Data Science                                                            |
| 2 | To analyze and implement linear and non-linear data structures and evaluate their          |
|   | performance using time and space complexity                                                |
| 3 | To develop the ability to design and apply advanced data structures for data               |
|   | manipulation, storage, and retrieval in AI-driven applications                             |
| 4 | To apply graph and tree-based structures to solve real-world problems, including           |
|   | searching, sorting, and optimization in AI models                                          |
| 5 | <b>To integrate</b> data structure knowledge in AI/ML pipelines and big data environments. |
|   |                                                                                            |

| CO  | CO Statement                                                        | Bloom's Level   |
|-----|---------------------------------------------------------------------|-----------------|
| CO1 | Understand and analyze the need for data structures in AI and       | Understand (L2) |
|     | Data Science applications.                                          |                 |
| CO2 | Implement and evaluate basic linear data structures (arrays, linked | Apply (L3)      |
|     | lists, stacks, and queues) with efficiency.                         |                 |
| CO3 | Design and apply non-linear data structures (trees, graphs, and     | Create (L6)     |
|     | heaps) to solve complex AI problems.                                |                 |
| CO4 | Optimize and manipulate large datasets using advanced hashing       | Evaluate (L5)   |
|     | and dynamic programming techniques.                                 |                 |



| Unit-1  | Introduction to Data Structures and Complexity Analysis                  | (6 Hours) |
|---------|--------------------------------------------------------------------------|-----------|
|         | Introduction to data structures and their use in AI and Data Science.    | CO1, CO2  |
|         | Classification of data structures: Linear vs. Non-Linear, Static vs.     |           |
|         | Dynamic. Time and space complexity. Introduction to Big O notation.      |           |
|         | Simple analysis of best, worst, and average case.                        |           |
| Unit-2  | Arrays, Linked Lists, and Applications                                   | (6 Hours) |
|         | Arrays: 1D and 2D arrays; applications in data representation (Tensors). | CO2, CO3  |
|         | Linked Lists: Singly and Doubly Linked List – basic operations (insert,  |           |
|         | delete, traverse).                                                       |           |
|         | Simple real-world examples like student records or dynamic lists.        |           |
| Unit- 3 | Stack and Queue Structures                                               | (6 Hours) |
|         | Stacks (LIFO): push, pop, peek operations; use in expression evaluation  | CO2, CO3  |
|         | (e.g., postfix). Queues (FIFO): enqueue, dequeue, and circular queue.    |           |
|         | Applications: Job scheduling, call center queue simulation.              |           |
| Unit- 4 | Introduction to Trees and Graphs                                         | (6 Hours) |
|         | Binary Trees and Binary Search Trees – insert, delete, search. Graph     | CO1, CO3  |
|         | basics: Representation using adjacency matrix and list. Simple           |           |
|         | traversals: DFS and BFS on small graphs. Basic applications: Finding     |           |
|         | friends on social media, tree-like data organization.                    |           |
| Unit- 5 | Searching, Sorting & AI-Oriented Structures                              | (6 Hours) |
|         | Searching: Linear Search and Binary Search.                              | CO2, CO4  |
|         | Sorting: Bubble Sort, Merge Sort, Quick Sort – with step-by-step         |           |
|         | examples. Intro to Sparse Matrices and Tensors in Python (NumPy          |           |
|         | basics). Simple use case: Preprocessing data for machine learning        |           |
|         | models.                                                                  |           |

# **Text Books**

- 1. Reema Thareja, "Data Structures Using C", Oxford University Press.
- 2. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Pearson.
- **3.** Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, "Fundamentals of Data Structures in C", University Press.

#### **Reference Books**

- 1. Robert Sedgewick and Kevin Wayne, "Algorithms", Addison-Wesley.
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms (CLRS)", MIT Press



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

| 3.     | Beı | njamin Baka, "                                        | Python Data     | Structure | s and Algori | thms", Packt P | Publishin     |                 |
|--------|-----|-------------------------------------------------------|-----------------|-----------|--------------|----------------|---------------|-----------------|
| 4.     | Ell | is Horowitz, S                                        | Sartaj Sahni    | , "Fund   | amentals o   | f Data Struc   | tures in C" - | -               |
| E Boo  | k   |                                                       |                 |           |              |                |               |                 |
| 1.     | Bra | ad Miller and                                         | David Ran       | um, "Pro  | blem Solv    | ing with Algo  | orithms and I | Data Structures |
|        | usi | ng                                                    | Python'         | ,         | _            |                | Available     | at:             |
|        | htt | ps://runestone                                        | academy/ru      | inestone  | /books/pub   | lished/python  | ds/index.html | 1               |
| 2.     | All | len B. Downe                                          | y, "Think D     | ata Struc | tures: Algo  | rithms and In  | formation Re  | trieval in      |
|        | Jav | a" – Availabl                                         | le at: https:// | greentea  | press.com/   | wp/think-data  | -structures/  |                 |
|        |     |                                                       | 1               | C         | 1            | 1              |               |                 |
| E-link | S   |                                                       |                 |           |              |                |               |                 |
|        | 1.  | NPTEL                                                 | Course          | _         | Data         | Structures     | and           | Algorithms      |
|        |     | https://nptel.                                        | ac.in/course    | s/106/10  | 2/1061020    | <u>64/</u>     |               | _               |
|        | Vio | deo lectures b                                        | y Prof. Nave    | en Garg   | (IIT Delhi   | )              |               |                 |
|        | 2.  | https://www                                           | .geeksforgee    | ks.org/d  | ata-structui | es/            |               |                 |
|        |     | Step-by-step tutorials, problems, and visualizations. |                 |           |              |                |               |                 |
|        | 3.  | https://www                                           | .khanacaden     | ny.org/co | omputing/co  | omputer-scier  | nce/algorithm | S               |
|        |     | Interactive v                                         | isuals and b    | eginner-  | friendly alg | gorithms.      | -             |                 |
|        | 4.  | NumPy: http                                           | s://numpy.o     | rg/learn/ |              |                |               |                 |
|        |     |                                                       |                 |           |              |                |               |                 |

W3Schools DSA in Python: https://www.w3schools.com/dsa/index.php



| Indira College of Engineering and Management (An autonomous Institute)            |          |         |   |            |             |           |  |
|-----------------------------------------------------------------------------------|----------|---------|---|------------|-------------|-----------|--|
| Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |          |         |   |            |             |           |  |
| Course                                                                            | Data Str | ucture  |   | Code       | 24UAIP302   |           |  |
| Credits                                                                           | 1        | Pr/week | 2 | Evaluation | Theory      | Practical |  |
|                                                                                   |          |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |  |
|                                                                                   |          | Th/week |   |            |             | -/25      |  |

**Prerequisite:** Basic knowledge of Python programming and understanding of core programming logic.

# **Course Objective:**

| 1 | To provide hands-on experience in implementing data structures using Python.       |
|---|------------------------------------------------------------------------------------|
| 2 | To understand the role of data structures in AI/ML workflows and Big Data environ- |
|   | ments.                                                                             |
| 3 | To analyze and implement efficient algorithms for solving real-world problems.     |
| 4 | To simulate linear and non-linear data structures for AI-relevant tasks.           |
| 5 | To explore performance analysis and memory optimization of AI-specific data struc- |
|   | tures.                                                                             |

| CO  | CO statement                                                       | Bloom's Level      |
|-----|--------------------------------------------------------------------|--------------------|
| CO1 | Implement and simulate linear and non-linear data structures in    | Apply (Level 3)    |
|     | Python.                                                            |                    |
| CO2 | Apply stack, queue, and linked list concepts to AI-relevant tasks. | Apply & Analyze    |
|     |                                                                    | (L3-L4)            |
| CO3 | Implement data preprocessing, cleaning, and transformation         | Analyze (Level 3)  |
|     | using Python and Pandas.                                           |                    |
| CO4 | Use advanced data structures like heaps, tries, graphs, and hash   | Evaluate (Level 5) |
|     | tables in real-world scenarios.                                    |                    |
| CO5 | Utilize Apache Spark RDDs and DataFrames to perform large-         | Analyze (Level 4)  |
|     | scale data processing on cloud platforms.                          |                    |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

# List of Assignments/Practical's (Any 8)

| Sr. | Title of Practical                                                          |
|-----|-----------------------------------------------------------------------------|
| No. |                                                                             |
| 1.  | Implement basic array operations (insert, delete, update, search)           |
| 2.  | Represent a matrix or table using a 2D array and perform basic operations.  |
| 3.  | Create and traverse a singly linked list.                                   |
| 4.  | Implement a stack and perform push, pop, and peek operations.               |
| 5.  | Implement insert and traversal operations in a doubly linked list.          |
| 6.  | Implement a queue with enqueue and dequeue operations.                      |
| 7.  | Implement a circular queue.                                                 |
| 8.  | Create a binary search tree (BST) and perform in-order traversal.           |
| 9.  | Represent a graph and perform Breadth-First Search (BFS).                   |
| 10. | Implement DFS traversal for an undirected graph.                            |
| 11. | Implement and compare linear and binary search on an integer list.          |
| 12. | Implement and compare bubble sort and merge sort with count of comparisons. |
| 13. | Store and print a sparse matrix efficiently using lists.                    |
| 14. | Implement a simple disjoint set using union and find operations             |
| 15. | Implement quick sort to check the number of comparisons                     |
| 16. | Perform reshape, slicing, and basic matrix operations on NumPy arrays.      |





001

| Indira College of Engineering and Management (An autonomous Institute)            |            |                                              |   |            |                     |           |  |
|-----------------------------------------------------------------------------------|------------|----------------------------------------------|---|------------|---------------------|-----------|--|
| Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |            |                                              |   |            |                     |           |  |
| Course                                                                            | Agile Engi | Agile Engineering and Project Code 24UAIL303 |   |            |                     |           |  |
|                                                                                   | Management |                                              |   |            |                     |           |  |
| Credits                                                                           | 3          | Pr/week                                      |   | Evaluation | Theory              | Practical |  |
|                                                                                   |            |                                              |   | Scheme     | TAE/CAE/ <b>ESE</b> | INT/EXT   |  |
|                                                                                   |            | Th/week                                      | 3 |            | -/-/50              |           |  |

Prerequisite: Basic understanding of Fundamental programming

# **Course Objective:**

| 1 | To introduce the fundamental concepts and principles of Agile methodology.       |
|---|----------------------------------------------------------------------------------|
| 2 | To develop an understanding of Agile planning, roles, and estimation techniques. |
| 3 | To equip with skills for tracking Agile projects using tools and metrics         |
| 4 | To apply Agile engineering practices such as CI/CD and DevOps.                   |
| 5 | To analyze the implementation of Agile in real-world AI/ML and software          |
|   | projects                                                                         |

| CO  | CO statement                                                     | Bloom's Level                     |
|-----|------------------------------------------------------------------|-----------------------------------|
| CO1 | Explain Agile values, principles, and frameworks                 | Understand (L2)                   |
| CO2 | Apply Agile roles, ceremonies, and estimation techniques.        | Apply (L3)                        |
| CO3 | Use tracking tools and interpret Agile project metrics.          | Applying(L3),<br>Analyzing (L4)   |
| CO4 | Implement Agile engineering practices such as TDD and CI/CD.     | Applying(L3),<br>Creating(L6)     |
| CO5 | Analyze and evaluate Agile practices in real-world applications. | Analyzing (L4),<br>Evaluating(L5) |





| Λ | Λ1 |  |
|---|----|--|
| U | UJ |  |

| Unit-1  | Fundamentals of Agile Methodology                                                                                                                                                                                                                                 | (9 Hours) |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|         | Evolution and need for Agile, Agile Manifesto and 12 Principles Agile vs Traditional (Waterfall) approach, Overview of Agile Frameworks: Scrum, Kanban, Benefits and limitations of Agile                                                                         |           |
| Unit-2  | Agile Planning and Estimation                                                                                                                                                                                                                                     | (9 Hours) |
|         | Scrum roles: Product Owner, Scrum Master, Development Team, Agile ceremonies: Sprint planning, Daily stand-up, Review, Retrospective, Writing user stories, epics, themes, Estimation techniques: Planning Poker, T-shirt sizing                                  |           |
| Unit- 3 | Project Tracking and Metrics in Agile                                                                                                                                                                                                                             | (9 Hours) |
|         | Product and Sprint Backlogs, Task Boards and Kanban Boards,<br>Sprint Burn-down, Burn-up Charts, Velocity, capacity, and tracking,<br>Agile Project Management Tools: JIRA, Azure DevOps                                                                          |           |
| Unit- 4 | Agile Engineering Practices                                                                                                                                                                                                                                       | (9 Hours) |
|         | Test Driven Development (TDD), Pair Programming, Continuous Integration / Continuous Deployment (CI/CD), DevOps culture in Agile, Refactoring and Technical Debt, Agile design and documentation practices                                                        |           |
| Unit- 5 | Agile Project Management in Real-world Applications                                                                                                                                                                                                               | (9 Hours) |
|         | Agile for AI/ML and Data Science Projects, Case studies of Agile in startups and large enterprises, Hybrid Agile frameworks (Agile + PMBOK/PRINCE2), Managing distributed and remote Agile teams, Capstone Group Activity: Build and present a mini Agile project |           |

#### **Reference Book**

- 1. A Guide to the Project Management Body of Knowledge (PMBOK Guide)" by Project Management Institute (PMI)
- 2. S K Chang, "Handbook of Software Engineering and Knowledge Engineering", World Scientific, Vol I, II, ISBN: 978-981-02-4973-1
- 3. Pankaj Jalote, "An Integrated Approach to Software Engineering", Springer, ISBN 13:9788173192715.

#### **Text Book**

- 1. Roger Pressman, "Software Engineering: A Practitioner's Approach", McGraw Hill, ISBN 0-07-337597-7
- 2. "Project Management: The Managerial Process" by Erik W. Larson and Clifford F. Gray
- 3. "Project Management for Engineering, Business, and Technology" by John M. Nicholas & Herman Steyn
- 4. "Project Management: A Systems Approach to Planning, Scheduling, and Controlling" by Harold Kerzner



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

#### E Book

- 1. <a href="https://ebookpdf.com/roger-s-pressman-software-engineering">https://ebookpdf.com/roger-s-pressman-software-engineering</a>
- 2. <a href="https://www.atlassian.com/work-management/project-management/project-management/project-management/">https://www.atlassian.com/work-management/project-management/</a>

#### E-Links

- 1. https://www.atlassian.com/project-management
- 2. https://onlinecourses.swayam2.ac.in/cec20\_cs07/preview
- 3. https://onlinecourses.nptel.ac.in/noc24\_mg01/preview



|         | Indira College of Engineering and Management (An autonomous Institute)            |         |   |            |             |           |  |  |
|---------|-----------------------------------------------------------------------------------|---------|---|------------|-------------|-----------|--|--|
| S       | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |             |           |  |  |
| Course  | Minor I - Fundamentals of Code 24UAIL3M11                                         |         |   |            |             |           |  |  |
|         | RPA                                                                               |         |   |            |             |           |  |  |
| Credits | 2                                                                                 | Pr/week |   | Evaluation | Theory      | Practical |  |  |
|         |                                                                                   |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |  |  |
|         |                                                                                   | Th/week | 2 |            | 10/15/25    |           |  |  |

Prerequisite: Basic knowledge of mathematics

# **Course Objective:**

| 1 | Understand core RPA concepts, its evolution, and significance in streamlining              |
|---|--------------------------------------------------------------------------------------------|
|   | business operations.                                                                       |
| 2 | <b>Examine</b> RPA's role in digital transformation and its applications across industries |
|   | (e.g., finance, healthcare, logistics).                                                    |
| 3 | <b>Differentiate</b> RPA from related technologies like AI, machine learning, and Business |
|   | Process Management (BPM).                                                                  |
| 4 | Explore RPA architecture, components, and leading tools (e.g., UiPath, Automation          |
|   | Anywhere, Blue Prism).                                                                     |
| 5 | Identify stages of the RPA lifecycle, including process discovery, development,            |
|   | deployment, and maintenance.                                                               |
| 6 | Discuss ethical implications, security challenges, and governance frameworks for           |
|   | sustainable RPA adoption                                                                   |

| CO1 | <b>Analyze</b> business processes using methodologies like process mining to pinpoint automation opportunities. |
|-----|-----------------------------------------------------------------------------------------------------------------|
| CO2 | Design, develop, and deploy basic RPA bots using industry-standard tools (e.g.,                                 |
|     | workflow automation, screen scraping).                                                                          |
| CO3 | Implement robust error handling, exception management, and logging in                                           |
|     | automation workflows.                                                                                           |
| CO4 | Integrate RPA solutions with external systems (e.g., ERP, CRM) via APIs or                                      |
|     | scripting.                                                                                                      |
| CO5 | <b>Apply</b> best practices for testing, debugging, and maintaining bots to ensure                              |
|     | scalability and reliability.                                                                                    |
| CO6 | Evaluate RPA's impact on organizational metrics such as cost reduction,                                         |
|     | accuracy, and efficiency.                                                                                       |
| CO7 | <b>Develop</b> governance frameworks to address compliance, security, and scalability                           |
|     | in RPA projects.                                                                                                |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

| CO8 | Collaborate with stakeholders to manage change, optimize workflows, and align |
|-----|-------------------------------------------------------------------------------|
|     | automation with business goals.                                               |

| Unit 1  | Introduction – Robotic Process Automation                              | (5 Hours) |
|---------|------------------------------------------------------------------------|-----------|
|         | History and evolution of RPA, Benefits & challenges of RPA,RPA         |           |
|         | vs traditional automation, use cases for RPA, RPA Tools and            |           |
|         | Platforms, Overview of popular RPA tools (e.g., UiPath, Automation     |           |
|         | Anywhere, Blue Prism, Power Automate), Components of RPA               |           |
|         | tools, Licensing and pricing models, Installation and setup of RPA     |           |
|         | tools                                                                  |           |
| Unit- 2 | RPA Lifecycle Stages of the RPA lifecycle:                             | (5 Hours) |
|         | Process identification and assessment Process design and               |           |
|         | development Testing and deployment Monitoring and maintenance,         |           |
|         | Best practices for each stage                                          |           |
| Unit- 3 | Process Identification and Assessment                                  | (5 Hours) |
|         | Identifying automation opportunities, Criteria for selecting processes |           |
|         | for automation, Process documentation and analysis, Feasibility and    |           |
|         | ROI analysis, RPA Development Basics,                                  |           |
|         | Understanding workflows and flowcharts,                                |           |
|         | Recording and playback functionality,                                  |           |
|         | Variables, arguments, and data types, Control structures (loops,       |           |
|         | conditions, decision-making), Error handling and debugging             |           |
| Unit- 4 | Working with RPA Tools                                                 | (5 Hours) |
|         | User interface and features of RPA tools, Creating and managing        |           |
|         | bots, Working with activities/commands, Data manipulation and file     |           |
|         | handling, Integration with other applications (e.g., Excel, databases, |           |
|         | APIs)                                                                  |           |
| Unit- 5 | Advanced RPA Concepts                                                  | (5 Hours) |
|         | Screen scraping and OCR (Optical Character Recognition), Working       |           |
|         | with unstructured data, Exception handling and recovery, Bot           |           |
|         | scheduling and orchestration, Cognitive automation and AI              |           |
|         | integration                                                            |           |
| Unit- 6 | Testing and Deployment                                                 | (5 Hours) |
|         | Types of testing (unit, integration, user acceptance), Test case       |           |
|         | development and execution, Deployment strategies, Version control      |           |
|         | and change management                                                  |           |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

#### Reference Book

- 1. Mikell P.Grover, Automation, Production Systems and Computer Integrated Manufacturing, Pearson Education Asia.
- 2. N.Viswanadham and Y.Narahari, Performance Modeling of Automated Manufacturing Systems, Prentice Hall India Pvt. Ltd.
- 3. K. Ogata, "Modern Control Engineering", Pearson India, 3rd Edition.
- 4. Norman Nise, "Control System Engineering", Prentice Hall India, Fourth Edition 3 Anand Kumar, "Control System Theory", Prentice-Hall India.
- 5. Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill, 2003.

#### **Text Book**

1. The Robotic Process Automation Handbook: A Guide to Implementing RPA Systems First Edition by Tom Taulli (Author)





001

| ]       | Indira College of Engineering and Management (An autonomous Institute)            |         |            |             |           |  |  |  |
|---------|-----------------------------------------------------------------------------------|---------|------------|-------------|-----------|--|--|--|
| Sec     | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |            |             |           |  |  |  |
| Course  | Course Open Elective I - DMS Code 24UAIL304A                                      |         |            |             |           |  |  |  |
|         | administration                                                                    |         |            |             |           |  |  |  |
| Credits | 3 Pr/week                                                                         |         | Evaluation | Theory      | Practical |  |  |  |
|         |                                                                                   |         | Scheme     | TAE/CAE/ESE | INT/EXT   |  |  |  |
|         |                                                                                   | Th/week | 3          |             | 10/15/50  |  |  |  |

**Prerequisite:** Basic knowledge of Database Management Systems, programming languages, computer system fundamentals,

# **Course Objective:**

| 1 | Understand database management system (DMS) administration principles.     |
|---|----------------------------------------------------------------------------|
| 2 | Learn database security and performance optimization techniques.           |
| 3 | Explore database backup and recovery strategies.                           |
| 4 | Develop practical skills in database administration tools and technologies |

|      | Upon successful completion of this course, students will be able to: |             |
|------|----------------------------------------------------------------------|-------------|
| CO1: | Explain the fundamental principles of AI and ML                      | Level 2     |
|      |                                                                      | :Understand |
| CO2: | Apply database security and performance tuning techniques.           | Level       |
|      |                                                                      | 3:Apply     |
| CO3: | Implement backup and recovery mechanisms.                            | 4 :Analyze  |
| CO4  | Use industry-standard database administration tools effectively.     | Level 5:    |
|      |                                                                      | Evaluate    |

| Unit 1  | Introduction to DMS Administration                                  | (9 Hours) |  |  |  |  |
|---------|---------------------------------------------------------------------|-----------|--|--|--|--|
|         | Database Architecture and Components: Overview of DBMS,             | CO1,      |  |  |  |  |
|         | Components of DBMS DBMS Engine, Query Processor, Storage            | CO2       |  |  |  |  |
|         | Manager, Transaction Manager, Database Schema, DBMS Models,         |           |  |  |  |  |
|         | Ensuring data integrity, security, user management, and performance |           |  |  |  |  |
|         | optimization.                                                       |           |  |  |  |  |
|         | Database Installation and Configuration                             |           |  |  |  |  |
| Unit-2  | Database Security and Performance Optimization                      | (9 Hours) |  |  |  |  |
|         | User Management and Access Control: Authentication and              | CO2,      |  |  |  |  |
|         | Authorization, Privilege Management, Indexing and Query             | CO3       |  |  |  |  |
|         | Optimization: Indexes, Query Optimization, Execution Plans,         |           |  |  |  |  |
|         | Performance Monitoring and Tuning: DBMS Performance Metrics,        |           |  |  |  |  |
|         | Optimization Techniques                                             |           |  |  |  |  |
| Unit- 3 |                                                                     |           |  |  |  |  |

#### 001



#### INDIRA COLLEGE OF ENGINEERING AND MANAGEMENT

Parandwadi, Pune – 410506, Ph. 02114 661500, <u>www.indiraicem.ac.in</u>

|         |                                                                    | CO3,CO4   |
|---------|--------------------------------------------------------------------|-----------|
|         | Types of Backups and Recovery Methods: Backup Types, Backup        |           |
|         | Strategies, Recovery Techniques, Database Failure and Crash        |           |
|         | Recovery Techniques: Failure Scenarios, Crash Recovery, Disaster   |           |
|         | Recovery Planning: Theoretical Concepts of Disaster Recovery,      |           |
|         | Recovery Time Objective (RTO) and Recovery Point Objective         |           |
|         | (RPO).                                                             |           |
| Unit- 4 | Advanced Database Administration                                   | (9 Hours) |
|         | Automating Administrative Tasks: Automation Principles, Scripting  | CO1,      |
|         | for DBAs, High Availability and Clustering: High Availability      | CO3       |
|         | Concepts, Database Clusters, Troubleshooting and Log Analysis: Log |           |
|         | File Management, Troubleshooting Methodologies                     |           |
| Unit- 5 | Industry Practices and Case Studies                                | (9 Hours) |
|         | Cloud Database Administration: Cloud-Based Databases,              | CO2,      |
|         | Scalability and Cost Management, Emerging Trends in Database       | CO4       |
|         | Management: NoSQL Databases, Database as a Service (DBaaS),        |           |
|         | Artificial Intelligence and Databases, Case Studies on Real-World  |           |
|         | Database Administration: Real-World Scenarios, Challenges and      |           |
|         | Solutions.                                                         |           |

#### **Reference Book**

- 1. "Database Systems: The Complete Book" by Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom
- 2. "Fundamentals of Database Systems" by Ramez Elmasri, Shamkant B. Navathe.
- 3. "SQL and Relational Theory" by C.J. Date.

#### **Text Book**

- 1. "Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S. Sudarshan
- 2. "Database Administration: The Complete Guide to Practices and Procedures" by Craig S. Mullins
- 3. "SQL Server 2019 Administration Inside Out" by Randolph West, William Assaf, and others
- 4. "Cloud Database Development and Management" by Lee Chao

#### E Book

- 1. Database Administration: The Complete Guide to DBA Practices and Procedures-https://ptgmedia.pearsoncmg.com/images/9780321822949/samplepages/0321822943.pdf.
- 2.Oracle Database Administrator's Guide- https://docs.oracle.com/en/database/oracle/oracle-database/18/admin/database-administrators-guide.pdf
- 3.Database Administration-
- https://www.ibm.com/docs/en/SSEPH2\_13.1.0/com.ibm.ims13.doc.pdf/dfsdagk1.pdf

#### E-Links

- 1. https://www.mongodb.com/resources/basics/databases/nosql-explained
- 2. https://aws.amazon.com/training/
- 3. https://skillsbuild.org/



| l       | Indira College of Engineering and Management (An autonomous Institute)            |              |                  |            |                  |         |  |
|---------|-----------------------------------------------------------------------------------|--------------|------------------|------------|------------------|---------|--|
| Sec     | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |              |                  |            |                  |         |  |
| Course  | DMS adm                                                                           | ninistration | Code 24UAIP304 A |            |                  |         |  |
| Credits | 1                                                                                 | Pr/week      | 2                | Evaluation | Theory Practical |         |  |
|         |                                                                                   |              |                  | Scheme     | TAE/CAE/ESE      | INT/EXT |  |
|         |                                                                                   | Th/week      |                  |            |                  | 25/     |  |

**Prerequisite:** Operating Systems (Basics)

# **Course Objective:**

| 1 | To enable students to understand and implement core database administration tasks  |
|---|------------------------------------------------------------------------------------|
|   | using SQL.                                                                         |
| 2 | To familiarize students with user access control, role-based permissions, and      |
|   | database security.                                                                 |
| 3 | To apply database scripting techniques for automating administrative tasks.        |
| 4 | To integrate key database operations such as constraints, indexing, and backups in |
|   | practical scenarios.                                                               |

| CO  | CO statement                                                  | Bloom's Level     |
|-----|---------------------------------------------------------------|-------------------|
| CO1 | Design and create database schemas using appropriate data     | Level 3: Apply    |
|     | types and constraints.                                        |                   |
| CO2 | Implement user roles, permissions, and access control         | Level 4: Analyze  |
|     | mechanisms in a database system.                              |                   |
| CO3 | Automate administrative tasks like user creation and backups  | Level 5: Evaluate |
|     | using SQL or scripting languages.                             |                   |
| CO4 | Integrate multiple administrative operations in comprehensive | Level 4: Analyze  |
|     | database management solutions.                                |                   |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

|   | List of Assignments/Practical's                                         |           |
|---|-------------------------------------------------------------------------|-----------|
| 1 | Write SQL scripts to create a database, tables, and insert records with | CO1       |
|   | appropriate data types.                                                 |           |
|   | Write SQL to apply primary key, foreign key, NOT NULL, UNIQUE,          | CO1, CO2  |
| 2 | and CHECK constraints.                                                  |           |
| 3 | Write SQL to create users, assign privileges (GRANT, REVOKE) and        | CO2       |
|   | view user roles.                                                        |           |
| 4 | Script to create multiple roles (admin, manager, viewer) and assign     | CO2, CO3  |
|   | database objects with varying permissions.                              |           |
| 5 | Use SQL script or Python to automate creation of multiple database      | CO1, CO3  |
|   | users from a CSV file.                                                  |           |
| 6 | Combine table creation, constraints, indexing, user access, and backup  | CO1, CO2, |
|   | into one integrated assignment.                                         | CO3, CO4  |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

| Indira College of Engineering and Management (An autonomous Institute) |                                                                                   |                 |        |            |             |           |  |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------|--------|------------|-------------|-----------|--|--|
| Second                                                                 | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                 |        |            |             |           |  |  |
| Course                                                                 | Open E                                                                            | lective I - Ana | lytics | Code       | 24UAIL304B  |           |  |  |
|                                                                        | using Data Science                                                                |                 |        |            |             |           |  |  |
| Credits                                                                | 3                                                                                 | Pr/week         |        | Evaluation | Theory      | Practical |  |  |
|                                                                        |                                                                                   |                 |        | Scheme     | TAE/CAE/ESE | INT/EXT   |  |  |
|                                                                        |                                                                                   | Th/week         | 3      |            | 10/15/50    |           |  |  |

**Prerequisite:** Basic Programming Skills, Basic Statistics, Data Structures and Algorithms **Course Objective:** 

| 1 | Understand the fundamental concepts of data science and analytics.      |
|---|-------------------------------------------------------------------------|
| 2 | Explore various data preprocessing and visualization techniques.        |
| 3 | Learn about statistical and machine learning methods for data analysis. |
| 4 | Apply data science techniques to real-world applications.               |

|      | Upon successful completion of this course, students will be    |               |
|------|----------------------------------------------------------------|---------------|
|      | able to:                                                       |               |
| CO1: | Explain the basic concepts of data science and analytics.      | Level 2:      |
|      |                                                                | Understanding |
| CO2: | Perform data preprocessing and visualization.                  | Level 3:      |
|      |                                                                | Applying      |
| CO3: | Implement statistical and machine learning techniques for data | Level 4:      |
|      | analysis.                                                      | Analyzing     |
| CO4  | Apply data science methodologies to solve real-world           | Level 5:      |
|      | problems                                                       | Evaluating    |

| Unit 1 | Introduction to Data Science                                        | (9 Hours) |
|--------|---------------------------------------------------------------------|-----------|
|        | Overview of Data Science and its applications: Understanding the    | CO1, CO2  |
|        | role of data science in various industries such as healthcare,      |           |
|        | finance, e-commerce, and social media. Data Science process and     |           |
|        | lifecycle: Exploration of the key stages in data science, including |           |
|        | data collection, cleaning, analysis, visualization, and             |           |
|        | interpretation. Basics of Python and R for data science:            |           |
|        | Introduction to programming languages widely used in data           |           |
|        | science, covering libraries such as Pandas, NumPy, and              |           |
|        | Matplotlib.                                                         |           |
| Unit-2 | Data Preprocessing and Visualization                                | (9 Hours) |
|        |                                                                     |           |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

|         | Data collection, cleaning, and transformation: Methods for        | CO2, CO3  |
|---------|-------------------------------------------------------------------|-----------|
|         | acquiring raw data, handling missing values, and transforming     |           |
|         | data into suitable formats. Handling missing data and outliers:   |           |
|         | Techniques such as imputation, interpolation, and removal of      |           |
|         | anomalies to improve data quality. Exploratory Data Analysis      |           |
|         | (EDA) using visualization tools: Understanding data distribution, |           |
|         | relationships, and trends using Matplotlib, Seaborn, and Tableau. |           |
| Unit- 3 | Statistical and Machine Learning Techniques                       | (9 Hours) |
|         | Descriptive and inferential statistics: Measures of central       | CO3, CO4  |
|         | tendency, variance, hypothesis testing, and confidence intervals. |           |
|         | Regression and classification models: Implementation of Linear    |           |
|         | Regression, Logistic Regression, Decision Trees, and Support      |           |
|         | Vector Machines. Clustering techniques and dimensionality         |           |
|         | reduction: K-Means, Hierarchical Clustering, Principal            |           |
|         | Component Analysis (PCA), and t-SNE for data simplification and   |           |
|         | pattern recognition.                                              |           |
| Unit- 4 | Big Data and Cloud Analytics                                      | (9 Hours) |
|         | Introduction to Big Data and Hadoop: Basics of big data           | CO1, CO3  |
|         | processing and Hadoop ecosystem, including HDFS, MapReduce,       |           |
|         | and Apache Spark. Cloud-based data analytics platforms:           |           |
|         | Overview of cloud-based services such as AWS, Google Cloud,       |           |
|         | and Microsoft Azure for scalable data analytics. Case studies in  |           |
|         | data analytics: Real-world applications of big data analytics in  |           |
|         | domains like retail, fraud detection, and personalized            |           |
|         | recommendations.                                                  |           |
| Unit- 5 | Applications of Data Science                                      | (9 Hours) |
|         | Real-world applications in finance, healthcare, and e-commerce:   | CO2, CO4  |
|         | Implementation of data science techniques in fraud detection,     |           |
|         | medical diagnosis, and recommendation systems. Ethical and        |           |
|         | privacy concerns in data analytics: Discussion on data privacy    |           |
|         | laws, ethical AI, and responsible data handling practices. Future |           |
|         | trends in data science: Emerging technologies, including AutoML,  |           |
|         | Edge AI, and AI-driven automation in analytics.                   |           |

# Reference Book

- 1."The Elements of Statistical Learning" by Trevor Hastie, Robert Tibshirani, and Jerome Friedman
- 2."Machine Learning Yearning" by Andrew Ng
- 3."Big Data: Principles and Best Practices" by Jules Berman

# **Text Book**

- 1."Data Science from Scratch" by Joel Grus
- 2."Introduction to Machine Learning with Python" by Andreas C. Müller and Sarah Guido



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

- 3. "Big Data in Practice" by Bernard Marr
- 4. "Cloud Analytics with Google Cloud Platform" by S. P. T. Nair

#### E Book

- 1. Data Science: Theories, Models, Algorithms, and Analytics-https://srdas.github.io/Papers/DSA\_Book.pdf?utm\_source=chatgpt.com.
- 2. Data Science from Scratch -https://jcer.in/jcer-docs/E-

Learning/Digital%20Library%20/E-

Books/Data%20Science%20from%20Scratch%20by%20Joel%20Grus.pdf?utm\_source=chatgpt.com

3. Practitioner's Guide to Data Science-

https://scientistcafe.com/ids/IDS.pdf?utm\_source=chatgpt.com

#### E-Links

- 1. https://www.edx.org/learn/data-science
- 2. https://365datascience.com/
- 3. https://www.datacamp.com/



001

| I       | Indira College of Engineering and Management (An autonomous Institute)            |                              |   |            |             |           |  |
|---------|-----------------------------------------------------------------------------------|------------------------------|---|------------|-------------|-----------|--|
| Seco    | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                              |   |            |             |           |  |
| Course  | Analytics                                                                         | Analytics using Data Science |   | Code       | 24UAIP304 B |           |  |
| Credits | 1                                                                                 | Pr/week                      | 2 | Evaluation | Theory      | Practical |  |
|         |                                                                                   |                              |   | Scheme     | TAE/CAE/ESE | INT/EXT   |  |
|         |                                                                                   | Th/week                      |   |            |             | 25/       |  |

**Prerequisite:** Basic Programming Skills, Introduction to Statistics or Applied Mathematics

# **Course Objective:**

| 1 | To introduce students to essential tools and libraries for data analysis using      |
|---|-------------------------------------------------------------------------------------|
|   | Python/R.                                                                           |
| 2 | To guide students through the data science lifecycle using real-world datasets.     |
| 3 | To implement statistical and analytical techniques for deriving insights from data. |
| 4 | To apply basic machine learning models and explore deployment using cloud-          |
|   | based tools.                                                                        |

| CO  | CO statement                                                                                    | Bloom's Level     |
|-----|-------------------------------------------------------------------------------------------------|-------------------|
| CO1 | Apply data science tools and frameworks (Pandas, NumPy, Spark) for data handling and analysis.  | Level 3: Apply    |
| CO2 | Use visualization and statistical techniques to understand and interpret datasets.              | Level 4: Analyze  |
| CO3 | Perform basic statistical analysis and model evaluation techniques.                             | Level 3: Apply    |
| CO4 | Develop and deploy basic recommendation models and demonstrate cloud-based analytics workflows. | Level 5: Evaluate |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

|   | List of Assignments/Practical's                                        |           |
|---|------------------------------------------------------------------------|-----------|
| 1 | Install Python/R, explore Pandas, NumPy, and load sample datasets.     | CO1       |
|   | Demonstrate the stages of data science lifecycle using a small         | CO1       |
| 2 | dataset.                                                               |           |
| 3 | Use statistical techniques and visualizations to detect outliers.      | CO2       |
| 4 | Calculate mean, median, standard deviation, and perform t-tests.       | CO3       |
| 5 | Perform data transformation and basic analysis on a Spark dataset.     | CO1, CO4  |
| 6 | Use Google Colab or AWS SageMaker to deploy a trained model.           | CO1, CO2, |
|   |                                                                        | CO3, CO4  |
| 7 | Analyze user behavior data and generate product/movie recommendations. | CO4       |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

| 0 | 0 | 1 |
|---|---|---|
|   |   |   |

| Ind     | Indira College of Engineering and Management (An autonomous Institute)            |         |   |            |             |           |
|---------|-----------------------------------------------------------------------------------|---------|---|------------|-------------|-----------|
| Second  | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |             |           |
| Course  | Open Elective I - Generative Code 24UAIL304 C                                     |         |   |            |             |           |
|         | AI (Gen AI)                                                                       |         |   |            |             |           |
| Credits | 3                                                                                 | Pr/week |   | Evaluation | Theory      | Practical |
|         |                                                                                   |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |
|         |                                                                                   | Th/week | 3 |            | 10/15/50    |           |

**Prerequisite:** Basic Programming Skills, Basic Statistics, Data Structures and Algorithms

# **Course Objective:**

| 1 | Understand the fundamentals of Generative AI and its applications.        |
|---|---------------------------------------------------------------------------|
| 2 | Learn various Generative AI models such as GANs, VAEs, and Transformers.  |
| 3 | Explore real-world applications of Generative AI in different industries. |
| 4 | Analyze the ethical considerations and future trends in Generative AI.    |

|      | Upon successful completion of this course, students will be able to: |            |
|------|----------------------------------------------------------------------|------------|
| CO1: | Explain the basic principles and working of Generative AI.           | Level 2:   |
|      |                                                                      | Understand |
| CO2: | Identify and utilize different models of Generative AI for various   | Level 3:   |
|      | applications.                                                        | Apply      |
| CO3: | Develop and implement Generative AI models for creative and          | Level 6:   |
|      | industrial use cases.                                                | Create     |
| CO4  | Analyze ethical concerns, biases, and future advancements in         | Level      |
|      | Generative AI.                                                       | 5:Analyze  |

| Unit 1 | Introduction to Generative AI                                 | (9 Hours) |
|--------|---------------------------------------------------------------|-----------|
|        | Overview of AI and Generative AI: Differences between         | CO1, CO2  |
|        | traditional AI and Generative AI, definition, and scope of    |           |
|        | Generative AI, Fundamentals of Machine Learning & Deep        |           |
|        | Learning: Understanding supervised, unsupervised, and         |           |
|        | reinforcement learning, Mathematical Foundations: Basics of   |           |
|        | probability, linear algebra, and optimization techniques used |           |
|        | in Generative AI, Generative AI vs. Traditional AI Models:    |           |
|        | Key distinctions, advantages, and challenges.                 |           |
| Unit-2 | Generative AI Models and Architectures                        | (9 Hours) |
|        | Generative Adversarial Networks (GANs): Introduction to       | CO2, CO3  |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

|         | GANs, architecture, training process, and applications in    |           |
|---------|--------------------------------------------------------------|-----------|
|         | image generation, Variational Autoencoders (VAEs):           |           |
|         | Concept, encoder-decoder architecture, and use in generative |           |
|         | tasks, Transformers and Large Language Models (LLMs):        |           |
|         | Working principles of GPT, BERT, and T5, Comparison of       |           |
|         | Different Generative AI Models: Strengths and limitations of |           |
|         | various approaches.                                          |           |
| Unit- 3 | Applications of Generative AI                                | (9 Hours) |
|         | Image and Video Generation: Deepfake technology, style       | CO3, CO4  |
|         | transfer, AI-generated artwork (e.g., DALL-E, Stable         |           |
|         | Diffusion), Text Generation & Natural Language Processing    |           |
|         | (NLP): Chatbots, text summarization, AI-assisted writing     |           |
|         | tools, Speech and Audio Synthesis: AI-powered voice          |           |
|         | cloning, music composition, and audio enhancement.           |           |
|         | Healthcare and Drug Discovery: AI-generated molecular        |           |
|         | structures, medical imaging synthesis.                       |           |
| Unit- 4 | Implementation of Generative AI Models                       | (9 Hours) |
|         | Programming for Generative AI: Introduction to Python        | CO1, CO3  |
|         | libraries (TensorFlow, PyTorch, OpenAI APIs). Data           |           |
|         | Preprocessing for Generative Models: Data collection,        |           |
|         | augmentation, and preprocessing techniques. Training and     |           |
|         | Fine-tuning Generative Models: Understanding                 |           |
|         | hyperparameters, evaluation metrics, and model fine-tuning.  |           |
|         | Deploying Generative AI Applications: Integration of         |           |
|         | Generative AI models into real-world applications.           |           |
| Unit- 5 | Ethical Considerations and Future of Generative AI           | (9 Hours) |
|         | Bias and Fairness in Generative AI: Addressing issues of AI  | CO2, CO4  |
|         | bias, fairness, and diversity in generated content, Deepfake |           |
|         | Detection and Security Concerns: Methods to identify AI-     |           |
|         | generated content and prevent misuse. Regulatory and Legal   |           |
|         | Aspects: AI policies, copyright issues, and responsible AI   |           |
|         | usage. Future Trends in Generative AI: AI creativity,        |           |
|         | multimodal models, and the role of AGI (Artificial General   |           |
|         | Intelligence). Case Studies: Industry applications of        |           |
|         | Generative AI in media, entertainment, healthcare, and       |           |
|         | research.                                                    |           |

# **Reference Book**

- 1."Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron
- 2."Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- 3."Pattern Recognition and Machine Learning" by Christopher Bishop



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

#### **Text Book**

- 1. "Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play" David Foster O'Reilly Media, 2nd Edition, 2022
- 2. "Hands-On Generative Adversarial Networks with Keras" Rafael Valle Packt Publishing, 2019
- 3. "Artificial Intelligence: A Guide for Thinking Humans" Melanie Mitchell Penguin, 2019
- 4. "Deep Learning" Ian Goodfellow, Yoshua Bengio, and Aaron Courville MIT Press, 2016

#### E Book

- 1. Mastering Generative AI and Prompt Engineering https://datasciencehorizons.com/pub/Mastering\_Generative\_AI\_Prompt\_Engineering\_Data\_Science\_Horizons\_v2.pdf
- 2. eBook: Generative AI for Beginners- https://www.scribd.com/document/767437768/eBook-Generative-AI-for-Begginner
- 3. Learn Python Generative AI: Journey from Autoencoders to Transformers to Large Language Models https://dokumen.pub/learn-python-generative-ai-journey-from-autoencoders-to-transformers-to-large-language-models.html

#### **E-Links**

- 1. https://vlab.spit.ac.in/ai/
- 2. https://azure.microsoft.com/en-us/blog/introducing-azure-ai-foundry-labs-a-hub-for-the-latest-ai-research-and-experiments-at-microsoft/
- 3. https://course.fast.ai/



| Inc     | Indira College of Engineering and Management (An autonomous Institute)            |         |   |        |             |           |
|---------|-----------------------------------------------------------------------------------|---------|---|--------|-------------|-----------|
| Secon   | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |        |             |           |
| Course  | Generative AI (Gen AI) Code 24UAIP304 C                                           |         |   |        |             |           |
| Credits | 1                                                                                 | Pr/week | 2 |        | Theory      | Practical |
|         |                                                                                   |         |   | Scheme | TAE/CAE/ESE | INT/EXT   |
|         |                                                                                   | Th/week |   |        |             | 25/       |

**Prerequisite:** Basic Programing

# **Course Objective:**

| 1 | To provide foundational knowledge of traditional AI models and contrast them   |
|---|--------------------------------------------------------------------------------|
|   | with generative AI approaches.                                                 |
| 2 | To introduce students to generative models such as GANs, VAEs, and             |
|   | Transformer-based architectures.                                               |
| 3 | To implement hands-on projects in image, text, and audio generation using pre- |
|   | trained and custom-trained models.                                             |
| 4 | To explore real-world applications of generative AI across domains like NLP,   |
|   | computer vision, and creative industries.                                      |

| CO  | CO statement                                                                                                                | Bloom's Level     |
|-----|-----------------------------------------------------------------------------------------------------------------------------|-------------------|
| CO1 | Compare traditional AI models with generative AI models and demonstrate key differences in architecture and output.         | Level 4: Analyze  |
| CO2 | Implement and evaluate basic generative models like GANs and VAEs for image generation tasks.                               | Level 3: Apply    |
| CO3 | Apply pre-trained generative models in tasks like text generation, style transfer, and summarization.                       | Level 4: Analyze  |
| CO4 | Design and fine-tune generative AI systems for creative and domain-specific applications like music synthesis and chatbots. | Level 5: Evaluate |

|   | List of Assignments/Practical's (Any 7)                        |          |
|---|----------------------------------------------------------------|----------|
| 1 | Experiment 1: AI vs. Generative AI                             | CO1, CO2 |
|   | <b>Objective:</b> Implement a simple AI model and compare its  |          |
|   | performance to a basic generative model (e.g., a simple linear |          |
|   | regression vs. a basic GAN model).                             |          |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in 001 Tools: Python, TensorFlow, PyTorch Outcome: Understand the core differences in architecture and output between traditional AI and generative AI models. Supervised vs. Unsupervised Learning CO1, CO2 2 **Objective:** Implement simple models for supervised learning (e.g., classification using decision trees) and unsupervised learning (e.g., clustering using k-means). Tools: Python, Scikit-learn Outcome: Understand the differences in data processing and learning mechanisms for supervised and unsupervised learning models. 3 **GANs - Image Generation** CO<sub>2</sub> **Objective:** Build and train a simple GAN to generate images from random noise (e.g., generate handwritten digits using MNIST dataset). **Tools:** Python, TensorFlow, Keras **Outcome:** Learn the architecture and training process of Generative Adversarial Networks (GANs). 4 Variational Autoencoders (VAEs) CO2, CO3 **Objective:** Implement a Variational Autoencoder for image generation or compression. **Tools:** Python, TensorFlow, Keras Outcome: Learn the encoder-decoder architecture and its application in generative tasks. 5 **Transformer Models for Text Generation** CO1, CO3 **Objective:** Use pre-trained Transformer models (e.g., GPT-2) to generate text based on a seed input. **Tools:** Python, Hugging Face's Transformers library Outcome: Understand the working principles of Transformer models like GPT, BERT, and T5. Image Style Transfer using Pre-trained Models 6 CO3, CO4 **Objective:** Use a pre-trained neural network (e.g., VGG16) to perform image style transfer and generate artistic versions of images. Tools: Python, TensorFlow, Keras **Outcome:** Understand the application of generative models in artistic content generation. **Text Summarization using Pre-trained GPT Models** 7 CO3, CO4 **Objective:** Implement a text summarization task using a pre-trained GPT model (e.g., GPT-3 or GPT-2). **Tools:** Python, Hugging Face's Transformers library **Outcome:** Explore applications of Generative AI in natural

CO3,CO4

language processing (NLP).

**AI-generated Music Composition** 

composition based on a given style or theme.

**Objective:** Use an AI tool (e.g., Magenta) to generate a music

8



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

Tools: Python, Magenta library
Outcome: Understand the use of Generative AI in the creative industry for music and audio synthesis.

Fine-tuning a Pre-trained Model (e.g., GPT-3 for Chatbots)
Objective: Fine-tune a pre-trained model like GPT-3 on a specific dataset to create a domain-specific chatbot.
Tools: Python, Hugging Face's Transformers, OpenAI API
Outcome: Learn how to fine-tune generative models for specialized applications.

001



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

| Indira College of Engineering and Management (An autonomous Institute)            |                                              |         |   |            |                  |         |
|-----------------------------------------------------------------------------------|----------------------------------------------|---------|---|------------|------------------|---------|
| Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                                              |         |   |            |                  |         |
| Course                                                                            | Entrepreneurship Essentials I Code 24UESP305 |         |   |            |                  |         |
| Credits                                                                           | 2                                            | Pr/week | 4 | Evaluation | Theory Practical |         |
|                                                                                   |                                              |         |   | Scheme     | TAE/CAE/ESE      | INT/EXT |
|                                                                                   |                                              | Th/week |   |            |                  | 25/-    |

Prerequisite: Basic understanding of business concepts & a strong interest in entrepreneurship

#### **Course Objective:**

| 1 | To provide students with a foundational understanding of entrepreneurship and the        |
|---|------------------------------------------------------------------------------------------|
|   | entrepreneurial process.                                                                 |
|   |                                                                                          |
| 2 | To develop the ability to identify and evaluate business opportunities and create viable |
|   | business models                                                                          |
| 3 | To equip students with knowledge of financial planning, marketing strategies, and        |
|   | operational processes in a startup.                                                      |
| 4 | To foster entrepreneurial thinking and the ability to navigate challenges faced by new   |
|   | ventures.                                                                                |
| 5 | To impart knowledge about business plan preparation and funding options.                 |

| CO  | CO Statement                                                   | Bloom's Level              |
|-----|----------------------------------------------------------------|----------------------------|
| CO1 | Understand the characteristics of successful entrepreneurs and | Understand (L2)            |
|     | the phases of the entrepreneurial journey.                     |                            |
| CO2 | Analyze opportunities and evaluate the feasibility of business | Apply (L3)                 |
|     | ideas.                                                         |                            |
| CO3 | Design and plan a business model including marketing,          | Create (L6)                |
|     | operations, and financial aspects.                             |                            |
| CO4 | Identify various sources of funding and develop an investor    | Evaluate (L5)              |
|     | pitch.                                                         |                            |
| CO5 | Demonstrate the ability to create and present a comprehensive  | Apply (L3) & Evaluate (L5) |
|     | business plan.                                                 |                            |
|     |                                                                |                            |



| Sr.<br>No. | List of Assignments                                                           |
|------------|-------------------------------------------------------------------------------|
| 1          | Study and analysis of a successful entrepreneur's journey                     |
| 2          | Generate and shortlist business ideas using brainstorming techniques          |
| 3          | Evaluate business opportunities using an opportunity matrix                   |
| 4          | Design customer personas and create empathy maps                              |
| 5          | Develop a Business Model Canvas for a new venture                             |
| 6          | Conduct a feasibility study (technical, market, financial) for a startup idea |
| 7          | Plan an MVP (Minimum Viable Product) for a selected business idea             |
| 8          | Develop a basic digital marketing strategy for a startup                      |
| 9          | Create a 1-year financial plan and perform break-even analysis                |
| 10         | Create a startup pitch deck and deliver an investor pitch                     |
| 11         | Identify legal structure and IPR needs for a startup                          |
| 12         | Perform a SWOT analysis and design a startup risk mitigation plan             |
| 13         | Participate in a startup launch simulation or business model competition      |

#### **Reference Books**

- 1. Thomas W. Zimmerer, Norman M. Scarborough *Essentials of Entrepreneurship and Small Business Management*, Pearson Education.
- 2. **Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd** *Entrepreneurship*, McGraw-Hill Education.
- 3. **Alexander Osterwalder, Yves Pigneur** *Business Model Generation*, John Wiley & Sons.
- 4. **Eric Ries** *The Lean Startup*, Crown Publishing.
- 5. Timmons, Spinelli *New Venture Creation: Entrepreneurship for the 21st Century*, McGraw Hill.

#### E Book

- 1. "The Startup Owner's Manual" by Steve Blank and Bob Dorf (Available on Amazon and Internet Archive)
- 2. "Zero to One: Notes on Startups" by Peter Thiel
- 3. "Entrepreneurship Development and Small Business Enterprises" by Poornima M. Charantimath (Available on academic e-libraries)



- 4. **Heidi M. Neck, Christopher P. Neck, Emma L. Murray** *Entrepreneurship: A Practice-Based Approach*, Sage Publications.
- 5. **Harvard Business Review** *The HBR Entrepreneur's Handbook*, Harvard Business Press.

#### E- Links

- 1. **NPTEL Entrepreneurship Development Programme** https://nptel.ac.in/courses/110/107/110107094
- 2. Startup School by Y Combinator https://www.startupschool.org
- 3. Strategyzer Business Model Canvas and Value Proposition Tools <a href="https://www.strategyzer.com">https://www.strategyzer.com</a>
- 4. Startup India Legal and Regulatory Resources <a href="https://www.startupindia.gov.in">https://www.startupindia.gov.in</a>
- **5.** Creately SWOT Analysis Templates https://creately.com/diagram-community/popular/t/swot
- **6.** Plan Projections Break-even Analysis and Financial Forecasting Tools <a href="https://www.planprojections.com">https://www.planprojections.com</a>





001

|         | Indira College of Engineering and Management (An autonomous Institute)            |                                      |              |            |             |           |  |
|---------|-----------------------------------------------------------------------------------|--------------------------------------|--------------|------------|-------------|-----------|--|
| Sec     | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                                      |              |            |             |           |  |
| Course  | Understand                                                                        | derstanding India – Code 24UVEP306 A |              |            |             |           |  |
|         | Introduction to Indian Constitution                                               |                                      | Constitution |            |             |           |  |
| Credits | 2                                                                                 | Pr/week                              | 4            | Evaluation | Theory      | Practical |  |
|         |                                                                                   |                                      |              | Scheme     | TAE/CAE/ESE | INT/EXT   |  |
|         |                                                                                   | Th/week                              |              |            |             | 25        |  |

Prerequisite: Basic understanding of Indian history and political science.

#### **Course Objective:**

| 1 | To provide a foundational understanding of the Indian Constitution's structure and significance.  |
|---|---------------------------------------------------------------------------------------------------|
| 2 | To elucidate the roles and functions of the Union and State governments                           |
| 3 | To highlight the importance of Fundamental Rights, Duties, and Directive Principles.              |
| 4 | To foster an appreciation for the constitutional values that guide India's democratic governance. |

| CO  | CO statement                                                                     | Bloom's Level                      |
|-----|----------------------------------------------------------------------------------|------------------------------------|
| CO1 | Comprehend the historical context and development of the Indian Constitution.    | Understand (L2)                    |
| CO2 | Analyze the structure and functions of Union and State governments.              | Analyzing (L4)                     |
| CO3 | Interpret the Fundamental Rights, Duties, and Directive Principles.              | Understand (L2),<br>Analyzing (L4) |
| CO4 | Apply constitutional principles to contemporary socio-political and legal issues | Applying (L3)                      |



### **List of Assignments:**

| Week | Topic to be covered                                                                                                                           | Activity                                                                                                    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1    | Introduction to the Constitution & Historical Background                                                                                      | Group activity: Timeline creation of constitutional milestones, video documentary review, quiz competition. |
| 2    | Constituent Assembly &<br>Government Acts                                                                                                     | Debate: "Impact of 1935 Act on Indian Polity" – with student panel discussions and written reflections.     |
| 3    | Silent Features & Preamble Analysis                                                                                                           | Create digital posters/presentations explaining Preamble keywords using Canva/AI tools.                     |
| 4    | Citizenship Laws & Changes (CAA etc.)                                                                                                         | Role play/simulation: Citizenship criteria judgment with mock court or panel format.                        |
| 5    | Fundamental Rights  Case study analysis: Real case Education, Freedom of Speecl and write-up.                                                 |                                                                                                             |
| 6    | Directive Principles & Fundamental Duties                                                                                                     | Chart-making activity: DPSPs vs Fundamental Rights – A comparative analysis + skit presentation.            |
| 7    | Union Government – President, PM,<br>Parliament                                                                                               | Infographic assignment: Powers of the President, Prime Minister, Lok Sabha, Rajya Sabha.                    |
| 8    | State Government & Centre-State Relations                                                                                                     | Simulation: Formation of a state government, mock legislative session.                                      |
| 9    | Constitutional Amendments                                                                                                                     | Group presentation: Landmark amendments and their impact.                                                   |
| 10   | Emergency Provisions & Case<br>Studies                                                                                                        | Dramatization: 1975 Emergency – Research and perform with character roles (Indira Gandhi, JP, etc.).        |
| 11   | Judicial Review and Basic Structure                                                                                                           | Case discussion: Kesavananda Bharati vs<br>State of Kerala – in teams with legal<br>argument mapping.       |
| 12   | Mini Project Presentation (Group Wise)  Project: Digital handbook/podcast "Constitution and AI Ethics" "Constitutional Values in Tech World." |                                                                                                             |
| 13   | Documentation Review and Viva<br>Prep                                                                                                         | Students submit reports, review peer work, prepare for oral presentations and viva.                         |
| 14   | Viva and Term Work Assessment                                                                                                                 | Internal/external examiners assess based on project + activities + viva.                                    |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

#### Text Book

- 1. Basu, D.D. Introduction to the Constitution of India. LexisNexis.
- 2. Pylee, M.V. India's Constitution. S. Chand & Company.
- 3. Austin, Granville. The Indian Constitution: Cornerstone of a Nation. Oxford University Press.

#### E-Links

- 1. National Portal of India: <a href="https://www.india.gov.in/my-government/constitution-india/constitution-india-full-text">https://www.india.gov.in/my-government/constitution-india/constitution-india-full-text</a>
- 2. Samvidhaan: The Making of the Constitution of India (Rajya Sabha TV Series): https://www.youtube.com/playlist?list=PLVOgwA\_DiGzoFR3j1mSGn5Z\_OQLxgodQi
- 3. Ministry of Law and Justice: <a href="https://legislative.gov.in/constitution-of-india">https://legislative.gov.in/constitution-of-india</a>



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

| Indira College of Engineering and Management (An autonomous Institute) |                                                                                   |         |   |            |             |           |  |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------|---|------------|-------------|-----------|--|--|
|                                                                        | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |             |           |  |  |
| Course                                                                 | Understanding India – Code 24UVEP306 B                                            |         |   |            |             |           |  |  |
|                                                                        | Political Structure and Governance                                                |         |   |            |             |           |  |  |
| Credits                                                                | 2                                                                                 | Pr/week | 4 | Evaluation | Theory      | Practical |  |  |
|                                                                        |                                                                                   |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |  |  |
|                                                                        |                                                                                   | Th/week |   |            |             | 25        |  |  |

**Prerequisite:** Basic understanding of Indian history, civics, and interest in governance, policy, and law.

#### **Course Objective:**

| 1 | To introduce the fundamentals of the Indian political system and constitutional framework.            |
|---|-------------------------------------------------------------------------------------------------------|
| 2 | To develop an understanding of the roles and responsibilities of Union, State, and Local Governments. |
| 3 | To evaluate the working of democratic institutions, electoral processes, and citizen participation.   |
| 4 | To apply knowledge of governance to analyze current political and administrative challenges.          |

| CO  | CO statement                                                        | Bloom's Level    |
|-----|---------------------------------------------------------------------|------------------|
| CO1 | Comprehend the historical context and development of the Indian     | Remembering (L1) |
|     | Constitution.                                                       |                  |
| CO2 | Analyze the structure and functions of Union and State              | Analyzing (L4)   |
|     | governments.                                                        |                  |
| CO3 | Interpret the Fundamental Rights, Duties, and Directive Principles. | Understand (L2), |
| CO4 | Apply constitutional and governance principles to contemporary      | Applying (L3)    |
|     | issues.                                                             |                  |



#### **List of Assignments:**

| Week | Topic to be covered                                                                                                   | Mode       |
|------|-----------------------------------------------------------------------------------------------------------------------|------------|
| 1    | Constitution Timeline: Create an interactive digital timeline of key events in the making of the Indian Constitution. | Individual |
| 2    | Mock Parliament: Conduct a roleplay simulation of Lok Sabha/Rajya Sabha discussing a current bill.                    | Group      |
| 3    | Government Structure Mapping: Visual presentation on structure and powers of Union and State Governments.             | Pair       |
| 4    | Fundamental Rights in Real Life: Case study analysis of landmark Supreme Court judgments.                             | Individual |
| 5    | Directive Principles Debate: Conduct a structured debate on relevance of Directive Principles today.                  | Group      |
| 6    | Civic Survey: Conduct a mini-survey on citizen awareness of fundamental duties and governance.                        | Group      |
| 7    | Digital Poster: Design a digital awareness campaign on democratic rights and voter participation.                     | Individual |
| 8    | Capstone Project: Presentation & documentation on a current governance challenge and policy solution                  | Group      |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

#### **Text Book**

- 1. M. V. Pylee An Introduction to the Constitution of India.
- 2. Subhash Kashyap Our Constitution

#### E-Links

- 1. PRS Legislative Research
- 2. India Code Ministry of Law and Justice
- 3. SWAYAM Political Science Courses



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

|         | Indira College of Engineering and Management (An autonomous Institute)            |         |            |             |           |    |  |  |
|---------|-----------------------------------------------------------------------------------|---------|------------|-------------|-----------|----|--|--|
|         | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |            |             |           |    |  |  |
| Course  | Understanding India – Code 24UVEP306 C                                            |         |            |             |           |    |  |  |
|         | Socio-cultural Diversity                                                          |         |            |             |           |    |  |  |
| Credits | 2 <b>Pr/week</b> 4                                                                |         | Evaluation | Theory      | Practical |    |  |  |
|         |                                                                                   |         | Scheme     | TAE/CAE/ESE | INT/EXT   |    |  |  |
|         |                                                                                   | Th/week |            |             |           | 25 |  |  |

#### **Prerequisite:**

- 1. Basic understanding of Indian history and geography.
- 2. Familiarity with fundamental sociological concepts

#### **Course Objective:**

| 1 | To provide an in-depth understanding of India's socio-cultural diversity.                             |
|---|-------------------------------------------------------------------------------------------------------|
| 2 | To explore the historical and contemporary factors contributing to this diversity.                    |
| 3 | To analyze the impact of socio-cultural diversity on India's development.                             |
| 4 | To foster appreciation and respect for various cultural practices and social structures within India. |

| CO  | CO statement                                                        | Bloom's Level   |
|-----|---------------------------------------------------------------------|-----------------|
| CO1 | Demonstrate comprehensive knowledge of India's diverse              | Understand (L2) |
|     | cultural and social landscapes.                                     |                 |
| CO2 | Critically analyze the historical contexts that have shaped India's | Analyzing (L4)  |
|     | socio-cultural fabric.                                              |                 |
| CO3 | Assess the implications of cultural diversity on national unity and | Evaluating (L5) |
|     | development.                                                        |                 |
| CO4 | Engage respectfully with various cultural practices and contribute  | Applying (L3)   |
|     | to inclusive practices in professional and personal lives.          |                 |





001

### **List of Assignments:**

| Week | Topic to be covered                                                                                        | Tools/Methods                    |
|------|------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1    | Workshop: Introduction to Indian Diversity –<br>Group Mapping of Religion, Region,<br>Language, Gender     | Flipcharts, Maps, Google Forms   |
| 2    | Activity: Demographic Analysis using Census or Government data                                             | Google Sheets / Tableau / Python |
| 3    | Creative Task: Create Infographic or Timeline on Religious and Linguistic Evolution                        | Canva / Figma / Poster Making    |
| 4    | Panel Discussion: Religion and Language in Unity vs Division                                               | Moderator-led group sessions     |
| 5    | Debate: "Caste and Class in Modern India" –<br>Students research and argue various<br>perspectives         | Research and Debate Format       |
| 6    | Case Study: Analysis of Government Scheme (e.g., Reservations, Scholarships) related to caste/class        | Report + PPT Presentation        |
| 7    | Interview Project: Interact with individuals from different regions and present their traditions & culture | Video Interviews / Voice Notes   |
| 8    | Photo Essay: Regional Diversity (Students submit visuals and short write-ups on cultural practices)        | Google Docs / Slides             |
| 9    | Roleplay: Impact of Globalization – Urban<br>Youth vs Rural Tradition                                      | Skit / Short Film                |
| 10   | Campaign Creation: Design a digital media campaign on "Cultural Inclusion in Technology Spaces"            | Social Media + Poster Creation   |
| 11   | Mini Project Work: Group activity - "One India, Many Stories" – Combine content from above assignments     | Collaborative Docs/Slides        |
| 12   | Presentation and Reflection: Showcase miniproject and submit individual reflection journals                | Viva + Report Submission         |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

#### **Reference Book**

- 1. "Cultural Diversity and Social Discontent: Anthropological Studies on Contemporary India" by R.S. Khare
- 2. "The Routledge Handbook of Contemporary India" edited by Knut A. Jacobsen.
- 3. "India: A Country Study" by James Heitzman and Robert L. Worden.
- 4. "When Cultures Collide: Leading Across Cultures" by Richard D. Lewis.

#### **Text Book**

- 1. "Indian Society and Ways of Living" by David G. Mandelbaum.
- 2. "Understanding India: Cultural Diversity" by R.S. Khare.

#### E-Links

- 1. Pondicherry University "Understanding India" Syllabus
- 2. Don Bosco College "Culture and Society" Syllabus





001

| Iı      | Indira College of Engineering and Management (An autonomous Institute)            |         |           |             |         |       |  |
|---------|-----------------------------------------------------------------------------------|---------|-----------|-------------|---------|-------|--|
| Seco    | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |           |             |         |       |  |
| Course  | Animated AI Code 24UAIP303                                                        |         |           | 24UAIP303   |         |       |  |
| Credits | 2 Pr/week 4 Evaluation Theory Pract                                               |         | Practical |             |         |       |  |
|         |                                                                                   |         | Scheme    | TAE/CAE/ESE | INT/EXT |       |  |
|         |                                                                                   | Th/week |           |             |         | 25/25 |  |

**Prerequisite:** Basic understanding of Fundamental programming

Companion Course: Agile Engineering and Project Management

#### **Course Objective:**

| 1 | To develop an understanding of Agile principles and apply them in project execution.                   |
|---|--------------------------------------------------------------------------------------------------------|
| 2 | To foster teamwork and real-world problem-solving through AI-driven animations or games.               |
| 3 | To explore AI tools, platforms, and libraries suitable for building intelligent animated applications. |
| 4 | To implement project management practices using tools like Jira, or GitHub Projects.                   |
| 5 | To design and deliver a complete AI-based mini project with proper documentation and presentation      |

| CO  | CO statement                                                                          | Bloom's Level                     |
|-----|---------------------------------------------------------------------------------------|-----------------------------------|
| CO1 | Understand Agile methodologies and project management tools.                          | Understand (L2)                   |
| CO2 | Apply Agile roles, ceremonies, and iterations in project execution.                   | Apply (L3)                        |
| CO3 | Build AI-based animated/game-based applications using AI tools/libraries.             | Applying(L3),<br>Creating(L6)     |
| CO4 | Document sprint planning, progress, testing, and retrospectives                       | Analyzing (L4),<br>Evaluating(L5) |
| CO5 | Demonstrate a working mini project with clear technical and management documentation. | Creating(L6),<br>Evaluating(L5)   |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

|    | List of Assignments/Practical's                                                       |
|----|---------------------------------------------------------------------------------------|
| 1  | Introduction to Agile: Create a project backlog and user stories for your Animated AI |
|    | idea.                                                                                 |
| 2  | Sprint 1 Planning: Design user stories, define tasks, and assign roles in the team.   |
| 3  | AI Tool Exploration: Hands-on with AI animation/game libraries like Unity ML          |
|    | Agents, Pygame, or Godot AI.                                                          |
| 4  | Create basic game/animated prototype integrated with AI logic (navigation, dialogue,  |
|    | prediction).                                                                          |
| 5  | Mid Sprint Review: Perform testing and gather peer/user feedback.                     |
| 6  | Sprint 2: Enhance AI logic (e.g., behavior trees, decision-making, or recommendation  |
|    | engine).                                                                              |
| 7  | CI/CD Setup or Version Control Workflow using GitHub/GitLab                           |
| 8  | Final Sprint Execution: Integrate visuals, audio, and narrative using animation/game  |
|    | logic.                                                                                |
| 9  | Final Testing & Bug Fixing: Prepare demo and fix feedback-based issues.               |
| 10 | Documentation and sprint retrospective: Prepare project report and team reflection.   |
| 11 | Final Presentation and Evaluation: Team demo, oral viva, and report submission.       |

# Semester IV





001

| Indira College of Engineering and Management (An autonomous Institute) |                                                                                   |         |   |            |                  |         |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------|---|------------|------------------|---------|--|
| Second Ye                                                              | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |                  |         |  |
| Course                                                                 | Feature Engineering(ML) Code 24UAIL401                                            |         |   |            |                  |         |  |
| Credits                                                                | 2                                                                                 | Pr/week |   | Evaluation | Theory Practical |         |  |
|                                                                        |                                                                                   |         |   | Scheme     | TAE/CAE/ESE      | INT/EXT |  |
|                                                                        |                                                                                   | Th/week | 2 |            | 10/15/50         |         |  |

Prerequisite: MSOffice skill Introduction to Machine Learning, Python Programming

#### **Course Objective:**

| 1 | Grasp the significance of feature engineering in enhancing ML model performance.         |
|---|------------------------------------------------------------------------------------------|
| 2 | Develop skills to preprocess raw data for feature extraction and transformation.         |
| 3 | Master techniques to handle missing data, outliers, and categorical variables.           |
| 4 | Apply dimensionality reduction and feature selection to optimize models                  |
| 5 | Incorporate sustainability, risk, and ethical considerations into engineering investment |
|   | evaluations.                                                                             |
| 6 | Implement end-to-end feature engineering pipelines in real-world projects.               |

**Course Outcomes:** By the end of the course, students will be able to:

| CO1 | Explain how feature engineering impacts model accuracy, efficiency, and interpretability |  |  |  |  |
|-----|------------------------------------------------------------------------------------------|--|--|--|--|
| CO2 | Clean, preprocess, and transform raw data into ML-ready features.                        |  |  |  |  |
| CO3 | Handle missing data and outliers using statistical and algorithmic methods.              |  |  |  |  |
| CO4 | Engineer features for structured, text, time-series, and image data.                     |  |  |  |  |
| CO5 | Apply feature selection techniques (filter, wrapper, embedded) to reduce overfitting     |  |  |  |  |
| CO6 | Build automated ML pipelines using tools like Scikit-learn, FeatureTools, and PCA.       |  |  |  |  |
| CO7 | Demonstrate feature engineering impact through capstone projects                         |  |  |  |  |



| Unit 1 | Introduction to Feature Engineering                                      | (8 Hours) |
|--------|--------------------------------------------------------------------------|-----------|
|        | Role of features in ML pipelines vs. model selection.                    |           |
|        | Bias-variance tradeoff and feature relevance.                            |           |
|        | Case studies: Impact of features in Kaggle competitions.                 |           |
|        | Lab:-Exploratory Data Analysis (EDA) on a dataset (e.g., Titanic,        |           |
|        | Housing Prices).                                                         |           |
|        | Key Tools: Pandas, Matplotlib.                                           |           |
| Unit 2 | Data Preprocessing                                                       | (7 Hours) |
|        | Handling missing data: Deletion, mean/median imputation, KNN             |           |
|        | imputation, Outlier detection: Z-score, IQR, Isolation Forest.           |           |
|        | Categorical encoding: One-hot, label, frequency, target encoding.        |           |
|        | <b>Lab</b> :-Preprocess a dataset with missing values and outliers.      |           |
|        | Key Tools: Scikit-learn, Missing no.                                     |           |
| Unit 3 | Feature transformation                                                   | (8 Hours) |
| Omt 3  | Scaling: Min-Max, Standardization, Robust scaling.                       | (6 Hours) |
|        | Non-linear transforms: Log, Box-Cox, binning.                            |           |
|        | Interaction terms and polynomial features.                               |           |
|        | <b>Lab</b> :-Transform skewed data and create interaction features.      |           |
|        | <b>Key Tools</b> : Scikit-learn, SciPy.                                  |           |
| Unit 4 | Feature Construction                                                     | (8 Hours) |
| Omt 4  |                                                                          | (o Hours) |
|        | Domain-specific features: Text (TF-IDF, n-grams), time-series (lag,      |           |
|        | rolling stats). Automated feature engineering: FeatureTools, PCA, t-SNE  |           |
|        | Feature aggregation: Customer behavior metrics, geospatial features.     |           |
|        | <b>Lab</b> :-Generate features from text/time-series data (e.g., Twitter |           |
|        | sentiment).                                                              |           |
|        | <b>Key Tools</b> : Feature Tools, NLTK.                                  |           |
|        | 1109 10015. 1 Catalo 10015, 1 12111.                                     |           |
| Unit 5 | Feature Selection                                                        | (4 Hours) |
|        | Filter methods: Correlation, mutual information.                         |           |
|        | Wrapper methods: Forward/backward selection, recursive feature           |           |
|        | elimination. Embedded methods: Lasso regularization, tree-based          |           |
|        | importance.                                                              |           |
|        | Lab:-Compare feature selection methods on a high-dimensional             |           |
|        | dataset.                                                                 |           |
|        | Key Tools: Scikit-learn, XGBoost.                                        |           |

#### Reference Book

- 1. "Decision Support Systems for Business Intelligence" by Vicki L. Sauter.
- 2. "Engineering Economics for Capital Investment Analysis" by Ted Eschenbach.



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

#### 3. "Multi-Criteria Decision Analysis: Methods and Software" by Alessio Ishizaka

#### **Text Book**

- 1. Feature Engineering and Selection: A Practical Approach for Predictive Models\* (2019) by Max Kuhn and Kjell Johnson
- 2. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists\* (2018) by Alice Zheng and Amanda Casari
- 3. Feature Engineering Bookcamp (2022) by Sinan Ozdemir
- 4. The Art of Feature Engineering: Essentials for Machine Learning\* by Pablo Duboue
- 5. Python Feature Engineering Cookbook\* (2020): A cookbook that provides practical recipes for feature engineering in Python



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

| Indira Col | Indira College of Engineering and Management (An autonomous Institute)            |         |   |            |             |           |
|------------|-----------------------------------------------------------------------------------|---------|---|------------|-------------|-----------|
| Second Yo  | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |             |           |
| Course     | Feature Engineering(ML)                                                           |         |   | Code       | 24UAIP401   |           |
| Credits    | 2                                                                                 | Pr/week | 4 | Evaluation | Theory      | Practical |
|            |                                                                                   |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |
|            |                                                                                   | Th/week |   |            |             | -/25      |

#### **Prerequisite:**

#### **Course Objective:**

| 1 | Understand the importance of feature engineering in machine learning.               |
|---|-------------------------------------------------------------------------------------|
| 2 | Learn techniques for data preprocessing, feature extraction, and feature selection. |
| 3 | Apply feature engineering methods to real-world datasets.                           |
| 4 | Evaluate the impact of feature engineering on model performance.                    |

#### **Course Outcomes:** By the end of the course, students will be able to:

| CO1 | Identify and handle missing values, outliers, and data inconsistencies.              |
|-----|--------------------------------------------------------------------------------------|
| CO2 | Apply data normalization, scaling, and encoding techniques.                          |
| CO3 | Extract relevant features from text, image, and time-series data.                    |
| CO4 | Select the most informative features using filter, wrapper, and embedded methods.    |
| CO5 | Evaluate the impact of feature engineering on model performance and interpret        |
|     | results.                                                                             |
| CO6 | Apply feature engineering techniques to solve real-world problems in classification, |
|     | regression, and clustering.                                                          |



#### **List of Assignments:**

| 1 | Handling Missing Values:                                                           |
|---|------------------------------------------------------------------------------------|
|   | Identify missing values in a dataset.                                              |
|   | Impute missing values using mean, median, or imputation techniques.                |
| 2 | Data Normalization:                                                                |
|   | Normalize numerical features using Min-Max Scaler or Standard Scaler.              |
|   | Compare the impact of normalization on model performance.                          |
| 3 | Feature Scaling:                                                                   |
|   | Scale features using techniques like Log Scaling or Power Transform.               |
|   | Evaluate the effect of feature scaling on model performance.                       |
| 4 | Encoding Categorical Variables:                                                    |
|   | One-Hot Encode categorical variables.                                              |
|   | Use Label Encoding or Ordinal Encoding for categorical variables.                  |
| 5 | Feature Extraction:                                                                |
|   | Extract relevant features from text data using techniques like TF-IDF or word      |
|   | embeddings.                                                                        |
|   | Extract features from image data using techniques like CNNs.                       |
| 6 | Feature Selection:                                                                 |
|   | Use correlation analysis to select relevant features.                              |
|   | Apply recursive feature elimination (RFE) or mutual information to select          |
|   | features.                                                                          |
| 7 | Handling Imbalanced Data:                                                          |
|   | Use oversampling, undersampling, or SMOTE to balance classes.                      |
|   | Evaluate the impact of handling imbalanced data on model performance.              |
| 8 | Creating New Features:                                                             |
|   | Create new features through feature interactions (e.g., multiplying two features). |
|   | Use domain knowledge to create new features.                                       |

#### Some popular datasets for feature engineering assignments

- 1. Titanic Dataset: A classic dataset for binary classification.
- 2. House Prices Dataset: A regression dataset for predicting house prices.
- 3. IMDB Dataset: A text classification dataset for sentiment analysis.





| Indira College of Engineering and Management (An autonomous Institute) |                                                                                   |         |            |        |             |         |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------|------------|--------|-------------|---------|--|
| Sec                                                                    | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |            |        |             |         |  |
| Course                                                                 | Industrial IoT                                                                    |         |            |        | 24UAIL402   |         |  |
| Credits                                                                | 2 Pr/week                                                                         |         | Evaluation | Theory | Practical   |         |  |
|                                                                        |                                                                                   |         |            | Scheme | TAE/CAE/ESE | INT/EXT |  |
|                                                                        |                                                                                   | Th/week | 2.         |        | 10/15/50    |         |  |

Prerequisite: Basics of Electronics and Communication, Fundamentals of Computer Science

#### **Course Objective:**

| 1 | To understand the fundamental concepts, architecture, and applications of Industrial IoT.         |
|---|---------------------------------------------------------------------------------------------------|
| 2 | To explore communication protocols, data acquisition methods, and analytics in IIoT environments. |
| 3 | To analyze the implementation of IIoT solutions and the role of edge and cloud computing.         |
| 4 | To evaluate security and privacy challenges in Industrial IoT applications.                       |

#### **Course Outcomes:**

|      | Upon successful completion of this course, students will be able to:   |              |
|------|------------------------------------------------------------------------|--------------|
| CO1: | Explain the fundamental concepts, architecture, and applications of    | Level: 2     |
|      | Industrial IoT.                                                        | (Understand) |
| CO2: | Describe communication protocols, data acquisition techniques, and     | Level :2     |
|      | data analytics in IIoT.                                                | (Understand) |
| CO3: | Implement IIoT solutions using edge and cloud computing                | Level: 3     |
|      | frameworks.                                                            | (Apply)      |
| CO4  | Assess the security challenges and mitigation strategies in Industrial | Level: 5     |
|      | IoT environments.                                                      | (Evaluate)   |

| Unit-1 | Introduction to Industrial IoT                                    | (7 Hours) |
|--------|-------------------------------------------------------------------|-----------|
|        | Overview of IoT and Industrial IoT: Definition of IoT and IIoT,   | CO1       |
|        | Evolution of Industrial IoT, Key Technologies and Applications:   |           |
|        | Smart Manufacturing, Predictive Maintenance, Digital Twins, Asset |           |
|        | Tracking and Monitoring                                           |           |
|        | , IIoT vs. Traditional IoT: Industrial Automation vs. Consumer    |           |
|        | Applications, Real-Time Processing Requirements, Scalability and  |           |
|        | Interoperability                                                  |           |
|        | ,Industrial IoT Architecture: Layered Architecture (Edge, Fog,    |           |
|        | Cloud), IIoT Devices and Sensors, Data Processing and Analytics   |           |
|        | Layer, Benefits and Challenges of IIoT, Improved Operational      |           |
|        | Efficiency, Cost Reduction, Data Management and Security Issues   |           |

001



| Unit-2  | HoT Protocols and Standards                                                                     | (7 Hours)    |
|---------|-------------------------------------------------------------------------------------------------|--------------|
|         | Communication Protocols for IIoT: MQTT (Message Queuing                                         | CO2,CO3      |
|         | Telemetry Transport), CoAP (Constrained Application                                             |              |
|         | Protocol), OPC-UA (Open Platform Communications - Unified                                       |              |
|         | Architecture), DDS (Data Distribution Service), Data Acquisition                                |              |
|         | Techniques, Sensor Integration and Data Collection, Signal                                      |              |
|         | Conditioning and Calibration, Real-Time Data Acquisition Systems,                               |              |
|         | 2.3 Edge and Cloud Data Processing, Data Filtering and Aggregation,                             |              |
|         | Edge Analytics for Low Latency, Cloud-Based Data Management,                                    |              |
|         | Protocol and Data Mapping, Matching Protocols to Industrial                                     |              |
|         | Scenarios, Real-World Examples and Case Studies                                                 |              |
| Unit-3  | Data Analytics in HoT                                                                           | (7 Hours)    |
|         | Role of Data Analytics in IIoT: Predictive Maintenance, Quality                                 | CO3, CO4     |
|         | Control and Optimization, Performance Monitoring, Data Acquisition                              |              |
|         | and Processing, Data Sources: Sensors and Machines, Data                                        |              |
|         | Preprocessing and Cleaning, Data Storage Solutions (Cloud,                                      |              |
|         | Edge), Edge and Cloud Analytics: Edge Computing for Real-Time                                   |              |
|         | Processing, Cloud Computing for Data Aggregation, Hybrid Edge-                                  |              |
|         | Cloud Models, Machine Learning Techniques for Predictive                                        |              |
|         | Maintenance, Anomaly Detection, Failure Prediction Models, Data-                                |              |
|         | Driven Decision Making, Real-Time Data Analysis: Stream Processing                              |              |
| TT 1. 4 | Frameworks, Visualization of IIoT Data, Dashboards and Reporting                                | /= <b>YY</b> |
| Unit- 4 | Implementing HoT Solutions  Sensor Integration and Data Apprication, Sensor Types and Selection | (7 Hours)    |
|         | Sensor Integration and Data Acquisition: Sensor Types and Selection,                            | CO3,CO4      |
|         | Signal Conditioning and Data Acquisition Systems, Calibration and Maintenance,                  |              |
|         | IIoT Gateways and Connectivity: Gateway Functions and Protocol                                  |              |
|         | Translation, Data Aggregation and Filtering, Secure Data                                        |              |
|         | Transmission, Software Platforms for HoT Development: Open-                                     |              |
|         | Source IIoT Platforms, Proprietary Solutions (AWS IoT, Azure                                    |              |
|         | IoT), Middleware for Data Integration, Implementation Case Studies:                             |              |
|         | Smart Manufacturing Systems, Predictive Maintenance in Factories,                               |              |
|         | Digital Twins for Equipment Monitoring, Challenges in IIoT                                      |              |
|         | Implementation: Interoperability Issues, Data Management and                                    |              |
|         | Storage, Resource Constraints                                                                   |              |
| Unit- 5 | Security and Privacy in IIoT                                                                    | (6 Hours)    |
|         | Security Challenges in IIoT Environments: Device Vulnerabilities,                               | CO4          |
|         | Network Attacks and Intrusions, Data Breach and Leakage, Industrial                             |              |
|         | Cybersecurity Standards: ISA/IEC 62443, NIST Cybersecurity                                      |              |
|         | Framework, ISO/IEC 27001 for Information Security, Threat                                       |              |
|         | Detection and Risk Mitigation: Intrusion Detection Systems                                      |              |
|         | (IDS), Network Traffic Analysis, Anomaly Detection Techniques,                                  |              |
|         | Privacy Considerations and Data Protection: Data Encryption                                     |              |
|         | Techniques, Access Control Mechanisms, Privacy Policies and                                     |              |
|         | Compliance,                                                                                     |              |

001



| Best Practices for Secure IIoT Deployment: Regular Security Audits, |  |
|---------------------------------------------------------------------|--|
| Secure Firmware and Software Updates, Role-Based Access Control     |  |
| (RBAC)                                                              |  |

#### **Reference Book**

- 1. "Industrial Internet of Things: Cybermanufacturing Systems" by Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat
- 2. "Industrial IoT: Concepts and Practice" by Shyam Varan Nath, Pethuru Raj, Preetham Kamidi
- 3. *Industrial IoT Security: Challenges, Solutions, and Future Directions* by David T. M. S. and R. K. Gupta

#### **Text Book**

- 1. "Industrial IoT: Challenges, Design Principles, Applications, and Security" by Ismail Butun
- 2. "The Industrial Internet of Things: Volume II: Concepts and Applications" by Alasdair Gilchrist
- 3. Industrial Internet of Things: Cybermanufacturing Systems by Sabina Jeschke, Christian Brecher, Houbing Song, and Danda B. Rawat
- 4. Big Data Analytics with IoT: Data Processing and Analysis for the Internet of Things by Rajkumar Buyya, S. Thamarai Selvi

#### E Book

- 1. Industrial Internet of Things: Cybermanufacturing Systems- https://aitskadapa.ac.in/e-books/AI%26DS/IOT/Industrial%20Internet%20of%20Things\_%20Cybermanufacturing%20Systems%20%28%20PDFDrive%20%29.pdf
- 2. Internet of Things: A Hands-On Approachhttps://www.academia.edu/82991439/Internet\_of\_Things\_A\_Hands\_On\_Approach
- 3. Industrial Internet of Things: Challenges, Design Principles, Applications, and Security- https://dokumen.pub/industrial-iot-challenges-design-principles-applications-and-security-1nbsped-3030424995-9783030424992.html

#### **E-Links**

- 1. Industrial Internet of Things (IIoT) Courserahttps://www.coursera.org/learn/industrial-internet-ofthings?utm\_source=chatgpt.com
- 2. Applied Industrial Internet of Things Coursera https://www.coursera.org/learn/applied-industrial-internet-of-things?utm\_source=chatgpt.com
- 3. https://www.coursera.org/specializations/developing-industrial-iot





001

|         | Indira College of Engineering and Management (An autonomous Institute)            |         |   |            |             |           |  |
|---------|-----------------------------------------------------------------------------------|---------|---|------------|-------------|-----------|--|
| Sec     | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |             |           |  |
| Course  | Industrial IoT Code                                                               |         |   | Code       | 24UAIP402   |           |  |
| Credits | 1                                                                                 | Pr/week | 2 | Evaluation | Theory      | Practical |  |
|         |                                                                                   |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |  |
|         |                                                                                   | Th/week |   |            |             | /25       |  |

**Prerequisite:** Basics of Programming and Embedded Systems, Fundamentals of Cloud Computing

#### **Course Objective:**

| 1 | To Understand the architecture and components of Industrial IoT systems, including  |
|---|-------------------------------------------------------------------------------------|
|   | hardware, sensors, and communication protocols.                                     |
| 2 | To Implement IoT communication protocols to facilitate data transmission between    |
|   | devices and the cloud.                                                              |
| 3 | To Develop cloud-based applications to visualize, store, and analyze sensor data in |
|   | real-time.                                                                          |
| 4 | To Apply data analytics and machine learning techniques to gain insights from IoT   |
|   | data and enhance system decision-making.                                            |
| 5 | To Implement security measures (encryption, authentication) to ensure secure        |
|   | communication and protect IoT systems from vulnerabilities.                         |

| CO1 | Explain the key components and architecture of an Industrial IoT       | Level 2:   |
|-----|------------------------------------------------------------------------|------------|
|     | system, including microcontrollers, sensors, actuators, and            | Understand |
|     | communication protocols                                                |            |
| CO2 | Design and implement communication systems using IoT protocols         | Level 3:   |
|     | such as MQTT to facilitate data transfer from sensors to cloud         | Apply      |
|     | platforms.                                                             |            |
| CO3 | Connect IoT devices to cloud platforms (e.g., ThingSpeak, AWS IoT)     | Level 3:   |
|     | for real-time data visualization and storage.                          | Apply      |
| CO4 | Analyze IoT data using tools such as Python and machine learning       | Level 4:   |
|     | techniques to extract insights, detect patterns, and make predictions. | Analyze    |
| CO5 | Secure IoT systems by implementing encryption, authentication, and     | Level 5:   |
|     | secure communication protocols to protect data integrity and prevent   | Evaluate   |
|     | unauthorized access.                                                   |            |



|   | List of Assignments                                                       |         |
|---|---------------------------------------------------------------------------|---------|
| 1 | Understand IoT fundamentals by setting up a simple IoT device using an    | CO1     |
|   | Arduino or Raspberry Pi. Implement a simple blink an LED Program,         |         |
|   | basic functionality.                                                      |         |
| 2 | Set up a basic IoT device using a Raspberry Pi or Arduino, and monitor    | CO1,CO2 |
|   | sensor readings like temperature or humidity                              |         |
| 3 | Interface a DHT11/DHT22 sensor with Arduino/Raspberry Pi, display         | CO1,CO2 |
|   | data on a screen, and control an actuator based on threshold values       |         |
| 4 | Use an Arduino with a temperature sensor to log temperature readings into | CO2,CO3 |
|   | a CSV file, storing it for later analysis or use in cloud storage.        |         |
| 5 | Use a button to turn an LED on and off, simulating basic IoT control      | CO1,CO2 |
|   | through a user interface.                                                 |         |
| 6 | Use the Blynk app to control and monitor IoT devices.                     | CO2,CO3 |
| 7 | Set up an MQTT broker and use an Arduino to send temperature readings     | CO2,CO5 |
|   | to the broker. On the cloud side, a simple application can display these  |         |
|   | readings.                                                                 |         |
| 8 | Send temperature and humidity data from Arduino or Raspberry Pi to        | CO3     |
|   | ThingSpeak and visualize it on a live dashboard.                          |         |
| 9 | Collect temperature data using an IoT device (Arduino/Raspberry Pi),      | CO4     |
|   | then use Python to calculate the average temperature and plot the data    |         |
|   | using Matplotlib.                                                         |         |

| Refere | ence Book                                                                                       |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1.     | Balan, K., "Internet of Things (IoT): Architecture and Applications" <i>Notion Press</i> , 2021 |  |  |  |  |  |
| 2.     | Pethuru Raj, Anupama C. Raman, "The Internet of Things: Enabling Technologies,                  |  |  |  |  |  |
|        | Platforms, and Use Cases" CRC Press, 2017                                                       |  |  |  |  |  |
| 3.     | Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things" Apress, 2016              |  |  |  |  |  |
| Text I | Book                                                                                            |  |  |  |  |  |
| 1.     | Raj Kamal, "Internet of Things: Architecture and Design"                                        |  |  |  |  |  |
|        | McGraw-Hill Education, 2017                                                                     |  |  |  |  |  |
| 2.     | Arshdeep Bahga and Vijay Madisetti, "Internet of Things: A Hands-On Approach"                   |  |  |  |  |  |
|        | Universities Press, 2014                                                                        |  |  |  |  |  |
| 3.     | Olivier Hersent, David Boswarthick, and Omar Elloumi, "The Internet of Things: Key              |  |  |  |  |  |
|        | Applications and Protocols"                                                                     |  |  |  |  |  |
|        | Wiley, 2nd Edition, 2016                                                                        |  |  |  |  |  |
| 4.     | Michael Margolis and Brian Jepson, "Arduino Cookbook"                                           |  |  |  |  |  |
|        | O'Reilly Media, 2nd Edition, 2020                                                               |  |  |  |  |  |
| E Bool | ζ.                                                                                              |  |  |  |  |  |
| 1.     |                                                                                                 |  |  |  |  |  |
|        | things-a-hands-on-approach-%20Arshadeep.pdf                                                     |  |  |  |  |  |
| 2.     | https://juniorfall.wordpress.com/wp-content/uploads/2011/11/arduino-cookbook.pdf                |  |  |  |  |  |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

| 3.    | https://pg.its.edu.in/sites/default/files/KCA043%20Internet%20of%20things%20- |              |             |         |         |           |          |           |            |
|-------|-------------------------------------------------------------------------------|--------------|-------------|---------|---------|-----------|----------|-----------|------------|
|       | IoT%20by%20                                                                   | 0Raj%20Ka    | amal%20Tex  | kt%20E  | Book.pd | f         |          |           |            |
| E-Lin | ks                                                                            |              |             |         |         |           |          |           |            |
| 1.    | Instructables:                                                                | IoT          | Projects    | with    | Ras     | pberry    | Pi       | and       | Arduino-   |
|       | https://www.ir                                                                | nstructables | .com/IoT-Ra | aspberr | y-Pi-Ar | duino-A   | utomat   | tion/     |            |
| 2.    | DroneBot                                                                      | Workshop     | : Ardui     | no      | and     | Raspb     | erry     | Pi        | Tutorials- |
|       | https://dronebo                                                               | otworkshop   | .com/       |         |         | _         | -        |           |            |
| 3.    | Sixfab Blog: Io                                                               | oT Projects  | with Rasph  | erry Pi | and Are | duino- ht | tps://si | ixfab.cor | n/blog/    |



| Indira College of Engineering and Management (An autonomous Institute)            |                                        |         |   |            |                  |         |  |
|-----------------------------------------------------------------------------------|----------------------------------------|---------|---|------------|------------------|---------|--|
| Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                                        |         |   |            |                  |         |  |
| Course                                                                            | Statistics & Probablity Code 24UAIL403 |         |   |            |                  |         |  |
| Credits                                                                           | 3                                      | Pr/week |   | Evaluation | Theory Practical |         |  |
|                                                                                   |                                        |         |   | Scheme     | TAE/CAE/ESE      | INT/EXT |  |
| Tutorial                                                                          | 1                                      | Th/week | 2 |            | 10/15/50         |         |  |

**Prerequisite:** Basic knowledge of mathematics

#### **Course Objective:**

| 1 | To introduce the core concepts of statistics and probability              |  |  |  |
|---|---------------------------------------------------------------------------|--|--|--|
| 2 | To enable students to describe and summarize data.                        |  |  |  |
| 3 | To help students understand probability models and distributions.         |  |  |  |
| 4 | To teach basic techniques in statistical inference and hypothesis testing |  |  |  |

|     | Upon successful completion of this course, students will be able to: |  |  |  |  |  |
|-----|----------------------------------------------------------------------|--|--|--|--|--|
| CO1 | Understand and apply basic statistical measures                      |  |  |  |  |  |
| CO2 | Solve problems using rules of probability.                           |  |  |  |  |  |
| CO3 | Interpret and work with data distributions.                          |  |  |  |  |  |
| CO4 | Perform basic inferential statistics and hypothesis tests.           |  |  |  |  |  |
|     |                                                                      |  |  |  |  |  |

| Unit-1  | Introduction to statistics                               | (7 Hours) |
|---------|----------------------------------------------------------|-----------|
|         | Definition and scope of statistics,                      | CO1       |
|         | Types of Data: qualitative and quantitative,             |           |
|         | Scales of measurement :nominal, ordinal, interval, ratio |           |
|         | Data collection and presentation: tables and graphs      |           |
| Unit-2  | Measures of central tendancy and dispersion              | (7 Hours) |
|         | Mean, median, mode                                       | CO2       |
|         | Range, variance, standard deviation                      |           |
|         | Quartile and interquartile range                         |           |
|         | Introduction to skewness and kurtosis                    |           |
| Unit- 3 | Probability theory                                       | (8 Hours) |
|         | Basic concepts of probability                            | CO3, CO4  |
|         | Addition and multiplication rules                        |           |
|         | Conditional probability and independence                 |           |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

|         | Baye's Theorem.                                       |           |  |  |  |  |
|---------|-------------------------------------------------------|-----------|--|--|--|--|
| Unit- 4 | Random variables and distributions                    | (9 Hours) |  |  |  |  |
|         | Discrete and continuous random variables              | CO3       |  |  |  |  |
|         | Probability mass and density functions                |           |  |  |  |  |
|         | Bionomial, poisson, and normal distributions          |           |  |  |  |  |
|         | Exception and variance of random variables            |           |  |  |  |  |
| Unit- 5 | Statisticalo inference                                | (9 Hours) |  |  |  |  |
|         | Sampling and sampling distributions                   | CO4       |  |  |  |  |
|         | Estimation: point and interval estimates              |           |  |  |  |  |
|         | Hypothesis testing: z-test, t-test                    |           |  |  |  |  |
|         | Chi-square test for independence and goodness of fit. |           |  |  |  |  |



001

| Indira College of Engineering and Management (An autonomous Institute) |                                                                                   |                |   |            |             |           |  |  |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------|---|------------|-------------|-----------|--|--|--|
| Sec                                                                    | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                |   |            |             |           |  |  |  |
| Course                                                                 | Minor II I                                                                        | ntroduction to |   | Code       | 24UAIL3M21  |           |  |  |  |
|                                                                        | Data Analytics                                                                    |                |   |            |             |           |  |  |  |
| Credits                                                                | 2                                                                                 | Pr/week        |   | Evaluation | Theory      | Practical |  |  |  |
|                                                                        |                                                                                   |                |   | Scheme     | TAE/CAE/ESE | INT/EXT   |  |  |  |
|                                                                        |                                                                                   | Th/week        | 2 |            | 10/15/25    |           |  |  |  |

Prerequisite: Basic programming (Python/R), introductory statistics

#### **Course Objective:**

| 1 | Build Foundational Knowledge: Introduce core concepts of data analytics, including |  |  |  |  |  |  |
|---|------------------------------------------------------------------------------------|--|--|--|--|--|--|
|   | data types, lifecycle, and applications in real-world scenarios.                   |  |  |  |  |  |  |
| 2 | Methodological Understanding: Explore methodologies for data collection,           |  |  |  |  |  |  |
|   | preprocessing, analysis, and interpretation.                                       |  |  |  |  |  |  |

#### Course Outcomes: By the end of the course, students will be able to:

| CO1 | Data Handling: Collect, clean, and preprocess raw data for analysis.                           |
|-----|------------------------------------------------------------------------------------------------|
| CO2 | Analytical Techniques: Apply descriptive, diagnostic, predictive, and prescriptive             |
|     | methods to derive insights.                                                                    |
| CO3 | <b>Technical Proficiency</b> : Familiarize learners with tools and techniques for descriptive, |
|     | diagnostic, predictive, and prescriptive analytics.                                            |
| CO4 | Ethical and Practical Application: Emphasize data management ethics, privacy                   |
|     | considerations, and effective communication of insights                                        |
| CO5 | Ethical Practice: Adhere to data privacy standards and ethical guidelines in analytics         |
|     | workflows                                                                                      |



| Unit 1  | Introduction to Data Analysis                                                 | (5 Hours) |
|---------|-------------------------------------------------------------------------------|-----------|
|         | <b>Topics</b> : Definition, scope, and importance of data analytics; types of |           |
|         | data (structured, unstructured); data lifecycle (collection, storage,         |           |
|         | processing).                                                                  |           |
|         | <b>Key Focus</b> : Role of analytics in decision-making and industry          |           |
|         | applications                                                                  |           |
| Unit 2  | Data Collection and Preprocessing                                             | (5 Hours) |
|         | <b>Topics</b> : Data sources (surveys, sensors, databases); data cleaning     |           |
|         | (handling missing values, outliers); transformation (normalization,           |           |
|         | aggregation).                                                                 |           |
|         | <b>Key Focus</b> : Techniques to ensure data quality and readiness for        |           |
|         | analysis.                                                                     |           |
| Unit-3  | Descriptive and Diagnostic Analytics                                          | (5 Hours) |
|         | <b>Topics</b> : Summarizing data (mean, median, variance); exploratory        |           |
|         | data analysis (EDA); identifying patterns and correlations; root-             |           |
|         | cause analysis.                                                               |           |
|         | <b>Key Focus</b> : Tools like Excel, SQL, and Python libraries (Pandas,       |           |
|         | NumPy)                                                                        |           |
| Unit-4  | Predictive Analytics                                                          | (5 Hours) |
|         | <b>Topics</b> : Regression models, classification algorithms (decision trees, |           |
|         | logistic regression), time-series forecasting.                                |           |
|         | <b>Key Focus</b> : Introduction to machine learning workflows and             |           |
|         | validation techniques.                                                        | 7= ==     |
| Unit- 5 | Prescriptive Analytics and Optimization                                       | (5 Hours) |
|         | Decision modeling, optimization techniques (linear Programming),              |           |
|         | simulation methods.                                                           |           |
|         | Using analytics to recommend actionable strategies.                           |           |
| Unit 6  | Data Visualization and Reporting                                              | (5 Hours) |
|         | <b>Topics</b> : Principles of effective visualization (charts, dashboards);   |           |
|         | tools like Tableau, Power BI; storytelling with data.                         |           |
|         | <b>Key Focus</b> : Communicating insights to stakeholders                     |           |
|         |                                                                               |           |





001

#### Reference Book

- **1. Python for Data Analysis** by Wes McKinney A must-read for learning data manipulation with Python.
- **2.** Business Analytics: The Science of Data-Driven Decision Making by U. Dinesh Kumar Focuses on analytics in business contexts.
- **3. Data Analytics: Principles, Tools, and Practices** by Dr. Gaurav Aroraa & Chitra Lele A comprehensive guide to advanced analytics techniques.
- **4. Data Analytics: Models and Algorithms for Intelligent Data Analysis** by Thomas A. Runkler A deep dive into data analytics methodologies.

#### Text Book

- 1. **Data Analytics Made Accessible** by Dr. Anil Maheshwari A beginner-friendly book that covers key concepts with real-world examples and case studies.
- 2. **Data Science for Business** by Foster Provost and Tom Fawcett Focuses on data mining and analytic thinking, making it ideal for professionals.
- 3. **Python for Data Analysis** by Wes McKinney A practical guide to using Python for data manipulation and analysis.
- 4. **The Elements of Statistical Learning** by Hastie, Tibshirani, and Friedman A more advanced book covering machine learning techniques.
- 5. **Big Data: Principles and Best Practices** by Jules J. Berman Explores big data concepts and their applications.



001

| Indira College of Engineering and Management (An autonomous Institute)            |                           |         |   |            |             |           |
|-----------------------------------------------------------------------------------|---------------------------|---------|---|------------|-------------|-----------|
| Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                           |         |   |            |             |           |
| Course                                                                            | Minor II Data Analytics   |         |   | 24UAIL4M22 |             |           |
|                                                                                   | using Advanced Excel tool |         |   |            |             |           |
| Credits                                                                           | 2                         | Pr/week |   | Evaluation | Theory      | Practical |
|                                                                                   |                           |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |
|                                                                                   |                           | Th/week | 2 |            | 10/15/25    |           |

Prerequisite: Msoffice skills, introductory statistics

#### **Course Objective:**

| 1 | Master advanced Excel tools for engineering data analysis (Power Query,            |
|---|------------------------------------------------------------------------------------|
|   | PivotTables, Power Pivot)                                                          |
| 2 | Develop skills to clean, transform, and visualize large engineering datasets       |
| 3 | Apply statistical methods, forecasting, and scenario analysis to solve engineering |
|   | problems                                                                           |
| 4 | Automate workflows using Excel macros and VBA scripting.                           |
| 5 | Prepare students to handle large-scale datasets (IoT, sensor data) and             |
|   | communicate insights effectively                                                   |
| 6 | Integrate Excel with Power BI for engineering dashboards and reporting.            |

#### **Course Outcomes:** By the end of the course, students will be able to:

| 1 | Clean and preprocess engineering datasets (e.g., sensor logs, manufacturing data) |
|---|-----------------------------------------------------------------------------------|
|   | using Power Query                                                                 |
| 2 | Analyze data with advanced functions (XLOOKUP, INDEX-MATCH),                      |
|   | PivotTables, and dynamic dashboards                                               |
| 3 | Apply statistical tools (regression, ANOVA) using Excel's Data Analysis ToolPak.  |
| 4 | Automate repetitive tasks (data imports, reports) using macros and VBA.           |
| 5 | Design predictive models for engineering scenarios (e.g., failure prediction,     |
|   | resource optimization).                                                           |
| 6 | Create interactive dashboards in Excel/Power BI to communicate insights to        |
|   | stakeholders                                                                      |



| Unit 1  | Introduction to Advanced Excel for Engineering                                                                      | (5 Hours)      |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
|         | Topics:                                                                                                             | (6 110415)     |  |  |  |  |  |
|         | Excel interface refresher: Worksheets, formulas, and cell                                                           |                |  |  |  |  |  |
|         | referencing. Engineering data types: Time-series, IoT sensor data,                                                  |                |  |  |  |  |  |
|         | quality control logs. Overview of advanced tools: Power Query,                                                      |                |  |  |  |  |  |
|         | Power Pivot, Data Model. Case Study: Excel's role in engineering                                                    |                |  |  |  |  |  |
|         | industries (automotive, aerospace).                                                                                 |                |  |  |  |  |  |
|         | Learning Objectives: Navigate Excel's advanced features and                                                         |                |  |  |  |  |  |
|         | recognize their engineering applications.                                                                           |                |  |  |  |  |  |
|         | Assessment: Quiz: Identify data types and tools for given                                                           |                |  |  |  |  |  |
|         | engineering scenarios.                                                                                              |                |  |  |  |  |  |
| Unit 2  | Data Cleaning & Transformation with Power Query                                                                     | (5 Hours)      |  |  |  |  |  |
|         | Topics:                                                                                                             |                |  |  |  |  |  |
|         | Importing data from CSV, SQL, and IoT sources. Removing                                                             |                |  |  |  |  |  |
|         | duplicates, handling missing values, and outlier detection.                                                         |                |  |  |  |  |  |
|         | Merging/Appending datasets (e.g., merging sensor data from                                                          |                |  |  |  |  |  |
|         | multiple sources). Engineering Application: Cleaning                                                                |                |  |  |  |  |  |
|         | manufacturing defect logs.                                                                                          |                |  |  |  |  |  |
|         | Learning Objectives: Transform raw datasets into analysis-ready                                                     |                |  |  |  |  |  |
|         | formats.                                                                                                            |                |  |  |  |  |  |
|         | Assessment: Assignment: Clean and merge vibration sensor data                                                       |                |  |  |  |  |  |
|         | from a wind turbine.                                                                                                |                |  |  |  |  |  |
| Unit- 3 | Advanced Formulas & PivotTables                                                                                     | (5 Hours)      |  |  |  |  |  |
|         | Topics: Advanced functions: XLOOKUP, INDEX-MATCH,                                                                   |                |  |  |  |  |  |
|         | SUMIFS. PivotTables: Grouping, calculated fields, and slicers.                                                      |                |  |  |  |  |  |
|         | Engineering KPIs: Mean Time Between Failures (MTBF), defect                                                         |                |  |  |  |  |  |
|         | rates.                                                                                                              |                |  |  |  |  |  |
|         | Case Study: Analyzing production line efficiency.                                                                   |                |  |  |  |  |  |
|         | Learning Objectives: Calculate engineering metrics and summarize                                                    |                |  |  |  |  |  |
|         | large datasets.                                                                                                     |                |  |  |  |  |  |
|         | Assessment: <i>Project</i> : Build a PivotTable dashboard to track factory                                          |                |  |  |  |  |  |
|         | downtime.                                                                                                           |                |  |  |  |  |  |
| Tini4 A | Statistical Analysis & Fancastins                                                                                   | ( <b>5</b> Ho) |  |  |  |  |  |
| Unit- 4 | Statistical Analysis & Forecasting  Descriptive statistics (AVERAGEIF, STDEV.P). Hypothesis                         | (5 Hours)      |  |  |  |  |  |
|         | testing (t-tests, ANOVA) using Data Analysis ToolPak. Time-series                                                   |                |  |  |  |  |  |
|         | forecasting: Exponential smoothing, moving averages. Engineering                                                    |                |  |  |  |  |  |
|         | Application: Predicting equipment failure rates.                                                                    |                |  |  |  |  |  |
|         | Learning Objectives: Validate hypotheses and forecast engineering                                                   |                |  |  |  |  |  |
|         | trends.                                                                                                             |                |  |  |  |  |  |
|         |                                                                                                                     |                |  |  |  |  |  |
|         | Assessment: Case Study: Use regression to predict energy                                                            |                |  |  |  |  |  |
|         | Assessment: Case Study: Use regression to predict energy consumption in a HVAC system                               |                |  |  |  |  |  |
| Unit- 5 | Assessment: Case Study: Use regression to predict energy consumption in a HVAC system  Automation with Macros & VBA | (5 Hours)      |  |  |  |  |  |



|        | Topics: Recording macros for repetitive tasks (e.g., monthly reports). Basic VBA scripting: Loops, conditional statements. Automating data imports and visualization updates. Engineering Application: Automating quality control checks. Learning Objectives: Develop automated workflows to improve efficiency. Assessment: <i>Project</i> : Create a macro to generate daily production reports                                   |           |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Unit 6 | Advanced Dashboards & Power BI Integration                                                                                                                                                                                                                                                                                                                                                                                           | (5 Hours) |
|        | Building interactive dashboards with slicers and timelines. Power Pivot: Data modelling and DAX formulas. Exporting Excel data to Power BI for advanced visualization. Engineering Application: Real-time monitoring of structural health data.  Learning Objectives: Design dashboards for real-time decision-making.  Assessment: Capstone Project: Build a Power BI dashboard for predictive maintenance of industrial machinery. |           |

## Reference Book 1. Advanced

- 1. Advanced Excel Essentials" by Jordan Goldmeier (for Power Query/DAX).
- 2. "Excel Power Pivot & Power Query For Dummies" by Michael Alexander.
- 3. "Excel Data Analysis For Dummies" Paul McFedries Covers basic to intermediate data analysis tools in Excel.
- 4. "Data Analysis with Microsoft Excel" Kenneth N. Berk & Patrick Carey ,A structured guide to statistical and analytical functions in Excel.
- 5. "Microsoft Excel 365 Bible" Michael Alexander & Dick Kusleika, Comprehensive coverage of Excel features, including PivotTables and Power Query.
- 6. "Power Pivot and Power BI" Michael Alexander & Matt Allington. Focuses on Power Pivot, DAX, and business intelligence in Excel.
- 7. "M is for (Data) Monkey" Ken Puls & Miguel Escobar, Best for mastering Power Query (data transformation & cleaning).
- 8. "The Definitive Guide to DAX" Marco Russo & Alberto Ferrari, Deep dive into DAX (Data Analysis Expressions) for Power Pivot
- 9. "Advanced Excel Essentials" Jordan Goldmeier, Covers advanced functions, array formulas, and dashboard techniques.
- 10. "Excel Dashboards & Reports For Dummies" Michael Alexander, Step-by-step guide to building interactive dashboards.





| V | V | 1 |
|---|---|---|
|   |   |   |
|   |   |   |
|   |   |   |

| Indira College of Engineering and Management (An autonomous Institute) |                                                                                  |         |   |            |             |           |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|---|------------|-------------|-----------|
| Third                                                                  | Third Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |             |           |
| Course                                                                 | Open Elective –II Data Code 24UAIL405 A                                          |         |   |            |             |           |
|                                                                        | Security & Privacy                                                               |         |   |            |             |           |
| Credits                                                                | 2                                                                                | Pr/week |   | Evaluation | Theory      | Practical |
|                                                                        |                                                                                  |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |
|                                                                        |                                                                                  | Th/week | 2 |            | 10/15/25    |           |

**Prerequisite:** Basic Programming Skills, Basic Statistics, Data Structures and Algorithms **Course Objective:** 

| 1 | Understand the fundamental concepts of data security and privacy.               |
|---|---------------------------------------------------------------------------------|
| 2 | Learn various cryptographic techniques for data protection.                     |
| 3 | Explore privacy-enhancing technologies and regulatory frameworks.               |
| 4 | Analyze security threats and mitigation strategies in data-driven environments. |

|     | Upon successful completion of this course, students will be able |             |
|-----|------------------------------------------------------------------|-------------|
|     | to:                                                              |             |
| CO1 | Explain key principles of data security and privacy.             | Level 2     |
|     |                                                                  | :Understand |
| CO2 | Apply cryptographic methods to secure data.                      | Level 3:    |
|     |                                                                  | Apply       |
| CO3 | Assess privacy risks and compliance with legal frameworks.       | Level 4:    |
|     |                                                                  | Analyze     |
| CO4 | Implement security measures for real-world applications.         | Level 5:    |
|     |                                                                  | Evaluate    |

| Unit 1 | Fundamentals of Data Security                                 | (6 Hours) |
|--------|---------------------------------------------------------------|-----------|
|        | Concepts of Data Security and Privacy: Confidentiality,       | CO1, CO2  |
|        | Integrity, Availability (CIA triad), Data privacy, Importance |           |
|        | of data security in modern enterprises and IT systems, Data   |           |
|        | Security Vulnerabilities and Threats: Common                  |           |
|        | vulnerabilities: software bugs, weak passwords,               |           |
|        | misconfigurations, Threat types: Insider threats, external    |           |
|        | attacks, accidental data leaks, Risk assessment and threat    |           |
|        | modeling basics, Security Policies and Access Control         |           |
|        | Models: Security policy components, Types of access           |           |
|        | control: Discretionary Access Control (DAC), Mandatory        |           |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

|         | Access Control (MAC), Role-Based Access Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|         | (RBAC), Attribute-Based Access Control (ABAC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| Unit-2  | Cryptographic Techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (6 Hours) |
|         | Symmetric and Asymmetric Cryptography: Symmetric key encryption, Asymmetric key encryption, Use cases and comparison: speed, complexity, key distribution, Key exchange protocols (Diffie-Hellman), Hash Functions and Digital Signatures, Key Management and Authentication Protocols                                                                                                                                                                                                                                                                                                                                          | CO2, CO3  |
| Unit-3  | Privacy and Data Protection Regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (6 Hours) |
|         | Privacy Principles and Data Protection Laws: Fair Information Practice Principles (FIPPs), Overview of major global laws:GDPR (EU), HIPAA (US - healthcare), CCPA (California), Indian PDP Bill (if applicable),Legal obligations for data controllers and processors, Anonymization and Pseudonymization Techniques, Privacy Risk Assessment and Mitigation:Data inventory and flow mapping, Identifying personal/sensitive data,Conducting Privacy Impact Assessments (PIA),Mitigation strategies: encryption, data minimization, retention policies                                                                          | CO3, CO4  |
| Unit- 4 | Security Threats and Countermeasures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (6 Hours) |
|         | Malware, Phishing, and Social Engineering Attacks: Types of malware: viruses, worms, Trojans, ransomware, Phishing techniques: spear phishing, whaling, clone phishing, Social engineering tactics: baiting, pretexting, tailgating, Realworld examples and prevention techniques, Intrusion Detection and Prevention Systems (IDS/IPS), Security Best Practices in Cloud and IoT Environments, Cloud security principles: shared responsibility, encryption, identity management, Cloud service models (IaaS, PaaS, SaaS) and their security implications, IoT security challenges: resource limitations, unsecured endpoints. | CO1, CO3  |
| Unit- 5 | <b>Emerging Trends in Data Security</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (6 Hours) |
|         | Blockchain for Data Security: Overview of blockchain principles: decentralization, immutability, consensus, Use cases: data integrity, identity verification, secure logging, Smart contracts and privacy concerns, AI-Driven Security Solutions: AI/ML in threat detection and response, Challenges: false positives, adversarial attacks, Case Studies on Data Breaches and Their Impact                                                                                                                                                                                                                                      | CO2, CO4  |

| Reference Book                                       |  |
|------------------------------------------------------|--|
| 1."Network Security Essentials" by William Stallings |  |
| 2. "Applied Cryptography" by Bruce Schneier          |  |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

3. "Privacy Engineering" by Ian Oliver

#### **Text Book**

- 1. "Principles of Information Security" by Michael E. Whitman and Herbert J. Mattord
- 2. "Computer Security: Principles and Practice" by William Stallings and Lawrie Brown
- 3. Mark Stamp, Information Security: Principles and Practice, Wiley, 2nd Edition, 2011.
- 4. Boris Lubarsky, Privacy, Data Protection and Cybersecurity in Europe, Palgrave Macmillan, 2017.

#### E Book

- 1. Big Data Analytics Privacy Law Considerations
- 2. Data Policies, Laws, and Regulations-https://openknowledge.worldbank.org/server/api/core/bitstreams/42ad2959-f7bd-559c-9fc1-b9c1be448fa1/content
- 3. William Stallings *Cryptography and Network Security: Principles and Practice* (7th Edition)- https://dl.hiva-network.com/Library/security/Cryptography-and-network-security-principles-and-practice.pdf

#### E-Links

- 1. Hands-On Virtual Labs and Demos- https://intellectualpoint.com/resources/hands-on-virtual-labs-and-demos/
- 2. Virtual Hacking Labs- https://www.virtualhackinglabs.com/
- 3. Data, Security, and Privacy- https://www.coursera.org/learn/data-security-privacy



001

| Ind     | Indira College of Engineering and Management (An autonomous Institute)            |         |   |            |             |           |  |
|---------|-----------------------------------------------------------------------------------|---------|---|------------|-------------|-----------|--|
| Second  | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |             |           |  |
| Course  | Open Elective –II Design                                                          |         |   | Code       | 24UAIL405 B |           |  |
|         | Thinking                                                                          |         |   |            |             |           |  |
| Credits | 2 Pr/week                                                                         |         |   | Evaluation | Theory      | Practical |  |
|         |                                                                                   |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |  |
|         |                                                                                   | Th/week | 2 |            | 10/15/25    |           |  |

**Prerequisite:** Basics of Communication and Soft Skills, Basics of Problem-Solving and Critical Thinking

# **Course Objective:**

| 1 | Understand the fundamental principles and importance of Design Thinking.          |
|---|-----------------------------------------------------------------------------------|
| 2 | Learn the five-stage Design Thinking process to solve complex problems.           |
| 3 | Develop innovative solutions using empathy, ideation, and prototyping techniques. |
| 4 | Apply Design Thinking methodologies to real-world challenges across industries.   |

|     | Upon successful completion of this course, students will be able |             |
|-----|------------------------------------------------------------------|-------------|
|     | to:                                                              |             |
| CO1 | Explain the fundamental concepts and need for Design Thinking.   | Level 2     |
|     |                                                                  | :Understand |
| CO2 | Utilize Design Thinking frameworks to understand user needs      | Level 3:    |
|     | and ideate solutions.                                            | Apply       |
| CO3 | Develop and prototype innovative solutions based on Design       | Level 4:    |
|     | Thinking methodologies.                                          | Analyze     |
| CO4 | Apply Design Thinking principles to real-world industry          | Level 5:    |
|     | problems.                                                        | Evaluate    |

| Unit 1  | Introduction to Design Thinking                                   | (6 Hours) |
|---------|-------------------------------------------------------------------|-----------|
|         | Definition and Importance of Design Thinking, Phases of Design    | CO1, CO2  |
|         | Thinking, Characteristics of a Design Thinker, Difference Between | 1         |
|         | Traditional Problem-Solving and Design Thinking, Real-World       | l         |
|         | Applications of Design Thinking, Hands-on Activity: Design        | 1         |
|         | Thinking Exercise.                                                |           |
| Unit- 2 | Empathy and Problem Definition                                    | (6 Hours) |
|         | Understanding user needs through observation and interviews       | ,CO2, CO3 |
|         | Empathy mapping and user personas, Problem framing and            | 1         |





Parandwadi, Pune – 410506, Ph. 02114 661500, <u>www.indiraicem.ac.in</u>

|         | redefining the problem statement, Techniques for identifying user   |           |
|---------|---------------------------------------------------------------------|-----------|
|         | pain points                                                         |           |
|         |                                                                     |           |
| Unit- 3 | Ideation Techniques                                                 | (6 Hours) |
|         | Brainstorming and Mind Mapping Techniques:Generating diverse        | CO3, CO4  |
|         | ideas through free association, Organizing thoughts using mind maps |           |
|         | for clarity, Lateral Thinking and SCAMPER Methodology :Applying     |           |
|         | Edward de Bono's lateral thinking approach, Using SCAMPER           |           |
|         | (Substitute, Combine, Adapt, Modify, Put to another use, Eliminate, |           |
|         | Reverse) for idea enhancement                                       |           |
|         | Storyboarding and Role-Playing for Ideation:                        |           |
|         | Visualizing user journeys and scenarios through storyboarding,      |           |
|         | Exploring different perspectives using role-playing techniques,     |           |
|         | Selecting and Prioritizing Ideas:                                   |           |
|         | Criteria-based evaluation of ideas                                  |           |
|         | Feasibility, desirability, and viability analysis                   |           |
|         | Decision matrix and voting techniques for idea selection            |           |
| Unit- 4 | Prototyping and Testing                                             | (6 Hours) |
|         | Low-fidelity vs. high-fidelity prototypes,                          | CO1, CO3  |
|         | Rapid prototyping tools and techniques, Usability testing and       |           |
|         | feedback collection, Iterative improvements based on user feedback  |           |
| Unit- 5 | Applications and Case Studies                                       | (6 Hours) |
|         | Blockchain for Data Security and Smart Contracts, AI-Driven         | CO2, CO4  |
|         | Security Solutions and Threat Intelligence, Case Studies on Major   |           |
|         | Data Breaches (Equifax, Facebook-Cambridge Analytica), Future of    |           |
|         | Cybersecurity: Quantum Cryptography, Homomorphic Encryption         |           |

# Reference Book 1. "The Design of Business" by Roger L. Martin 2. "This is Service Design Thinking" by Marc Stickdorn and Jakob Schneider 3. "Creative Confidence" by Tom Kelley and David Kelley Text Book 1. "Design Thinking for Strategic Innovation" by Idris Mootee 2. "The Art of Innovation" by Tom Kelley 3. Design Thinking for Strategic Innovation: What They Can't Teach You at Business or Design School Idris Mootee Wiley 1st Edition, 2013 4. Change by Design: How Design Thinking Creates New Alternatives for Business and



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

Society Tim Brown Harvard Business Review Press 1st Edition, 2009

#### E Book

- 1. An Introduction to Design Thinking Process Guidehttps://web.stanford.edu/~mshanks/MichaelShanks/files/509554.pdf
- 2. Design Thinking for Strategic Innovation http://aitskadapa.ac.in/e-books/CSE/DESIGN%20THINKING/Design%20Thinking%20for%20Strategic%20Innovation\_%20What%20They%20Can\_t%20Teach%20You%20at%20Business%20or%20Design%20School%20%28%20PDFDrive%20%29.pdf
- 3. Design Thinking for Educators Toolkithttps://f.hubspotusercontent30.net/hubfs/6474038/Design%20for%20Learning/IDEO\_ DTEdu\_v2\_toolkit%2Bworkbook.pdf

#### **E-Links**

- 1. Creative Design, Prototyping & Experiential Lab IIT Guwahati- <a href="https://cpe-iitg.vlabs.ac.in/?utm\_source=chatgpt.com">https://cpe-iitg.vlabs.ac.in/?utm\_source=chatgpt.com</a>
- 2. "What Is Design Thinking & Why Is It Important?" Harvard Business School Online- https://online.hbs.edu/blog/post/what-is-design-thinking
- 3. Design Thinking Courses Courserahttps://www.coursera.org/courses?query=design%20thinking

001





| Indira College of Engineering and Management (An autonomous Institute) |                                                                                   |         |            |        |             |         |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------|------------|--------|-------------|---------|--|
| Second                                                                 | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |            |        |             |         |  |
| Course                                                                 | Open Elective –II Social                                                          |         |            | Code   | 24UAIL405 C |         |  |
|                                                                        | Network Analysis                                                                  |         |            |        |             |         |  |
| Credits                                                                | 2 Pr/week                                                                         |         | Evaluation | Theory | Practical   |         |  |
|                                                                        |                                                                                   |         |            | Scheme | TAE/CAE/ESE | INT/EXT |  |
|                                                                        |                                                                                   | Th/week | 2          |        | 10/15/25    |         |  |

**Prerequisite:** Basic Knowledge of probability, and statistics, Data Structures and Algorithms, Basic Python programming skills

# **Course Objective:**

| 1 | Understand the theoretical foundations of social network structures and     |
|---|-----------------------------------------------------------------------------|
|   | properties.                                                                 |
| 2 | Explore various models, metrics, and algorithms used for social network     |
|   | analysis.                                                                   |
| 3 | Apply software tools for visualizing and analyzing real-world network data. |
| 4 | Interpret network-based insights for applications in diverse domains.       |

# **Course Outcomes:**

|      | Upon successful completion of this course, students will be able  |             |
|------|-------------------------------------------------------------------|-------------|
|      | to:                                                               |             |
| CO1: | Explain core concepts and terminologies of social network theory. | Level 2     |
|      |                                                                   | :Understand |
| CO2: | Apply graph metrics and mathematical models for network           | Level 3:    |
|      | analysis.                                                         | Apply       |
| CO3: | Use SNA tools to analyze and visualize network data.              | Level 4:    |
|      |                                                                   | Analyze     |
| CO4  | Evaluate and derive insights from real-world social networks.     | Level 5:    |
|      |                                                                   | Evaluate    |

| Unit 1 | Introduction to Social Networks                                    | (6 Hours) |  |  |  |
|--------|--------------------------------------------------------------------|-----------|--|--|--|
|        | Definition and scope of Social Network Analysis, Types of          | CO1       |  |  |  |
|        | networks: social, communication, information, biological,          |           |  |  |  |
|        | Structure vs. dynamics of networks, Importance of SNA in           |           |  |  |  |
|        | interdisciplinary research, Examples of social networks: Facebook, |           |  |  |  |
|        | Twitter, citation networks                                         |           |  |  |  |
| Unit-2 | Mathematical Foundations and Metrics                               | (6 Hours) |  |  |  |
|        | Graph theory fundamentals: graphs, subgraphs, degrees, paths,      | CO1, CO2  |  |  |  |

001





Unit- 3

Unit- 4

Unit- 5

Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

cliques, Adjacency matrix, incidence matrix, Laplacian matrix, Network properties: density, average path length, clustering coefficient, Centrality Measures: Degree centrality, Betweenness centrality, Closeness centrality, Eigenvector centrality, Structural holes and brokerage **Network Models and Community Detection** (6 Hours) Random Network Model, Small-world Model, Scale-free CO<sub>2</sub> Networks, Community detection: Girvan–Newman algorithm, Modularity and Louvain algorithm, Link prediction and influence maximization. Tools, Visualization, and Implementation (6 Hours) Introduction to tools: Gephi, NetworkX, Pajek, NodeXL, Data CO3 collection: APIs (Twitter, Facebook), web scraping, Data cleaning and preprocessing, Network visualization: layout algorithms (Force Atlas, Fruchterman-Reingold), Python-based analysis with NetworkX (basic code snippets) **Applications and Case Studies** (6 Hours) Social media analytics (retweet, mention networks), Information CO4 diffusion and virality, Epidemic modeling and contact tracing networks, Collaboration networks in research and education, SNA in marketing, recommendation, and political networks,

#### **Reference Book**

- 1. Easley, D., & Kleinberg, J. (2010). Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press.
- 2. Tsvetovat, M., & Kouznetsov, A. (2011). Social Network Analysis for Startups, O'Reilly Media.
- 3. Hansen, D., Shneiderman, B., & Smith, M. A. (2010). Analyzing Social Media Networks with NodeXL, Elsevier.

#### **Text Book**

- 1. Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications, Cambridge University Press.
- 2. Scott, J. (2017). Social Network Analysis (4th ed.), SAGE Publications.
- 3. Social Network Analysis: Methods and Examples Authors: Song Yang, Franziska B. Keller, and Lu Zheng Publisher: SAGE Publications, 2017

Ethical issues in social network data handling

4. Social Network Analysis: Theory and Applications Authors: B. Abhishek and Sumit Hirve

001



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

Publisher: Wiley

E Book

1. https://library.oapen.org/bitstream/handle/20.500.12657/58730/1/9781849668200.pd f

2. https://www.asecib.ase.ro/mps/Social%20Network%20Analysis%20%5B1994%5D. pdf

3. https://library.uc.edu.kh/userfiles/pdf/18.Models%20and%20Methods%20in%20Social%20Network%20Analysis.pdf

E-Links

1. https://www.coursera.org/learn/social-network-analysis
2. https://iitb.vlabs.co.in/

3. https://iitb.vlabs.co.in/





001

|         | Indira College of Engineering and Management (An autonomous Institute)            |             |     |            |             |           |  |
|---------|-----------------------------------------------------------------------------------|-------------|-----|------------|-------------|-----------|--|
|         | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |             |     |            |             |           |  |
| Course  | SEC-III Continuous Integration/ Code 24UAIP404 A                                  |             |     |            |             |           |  |
|         | Deployr                                                                           | ment Framew | ork |            |             |           |  |
| Credits | 2                                                                                 | Pr/week     | 4   | Evaluation | Theory      | Practical |  |
|         |                                                                                   |             |     | Scheme     | TAE/CAE/ESE | INT/EXT   |  |
|         |                                                                                   | Th/week     |     |            |             | 25/-      |  |

Prerequisite: Basic knowledge of software development and version control systems (Git)

# **Course Objective:**

| 1 | Understand CI/CD concepts and modern DevOps lifecycle.             |
|---|--------------------------------------------------------------------|
| 2 | Gain hands-on experience with popular CI/CD tools.                 |
| 3 | Build and manage deployment pipelines for real-world applications. |
| 4 | Integrate automated testing, code quality, and monitoring in CI/CD |

| CO  | CO Statement                                                           | Bloom's Level  |
|-----|------------------------------------------------------------------------|----------------|
| CO1 | Explain core concepts of CI/CD and its role in DevOps lifecycle        | Remember(L1),  |
|     |                                                                        | Understand(L2) |
| CO2 | Set up a CI/CD pipeline using open-source tools                        | Apply(L3)      |
| CO3 | Automate testing, building, and deployment using scripts and workflows | Apply(L3),     |
|     |                                                                        | Analyze(L4)    |
| CO4 | Evaluate the effectiveness of CI/CD integration with quality and       | Analyze(L4),   |
|     | monitoring                                                             | Evaluate(L3)   |

| Lab | Lab Assignment Description                                                   | CO Mapping |
|-----|------------------------------------------------------------------------------|------------|
| No. |                                                                              |            |
| 1   | Setup Git and GitHub repository; demonstrate cloning, branching, and pull    | CO1        |
|     | requests                                                                     |            |
| 2   | Create a basic build script using Maven/Gradle/npm for a sample project      | CO2        |
| 3   | Install Jenkins and configure a freestyle project to build a JavaScript/Java | CO2        |
|     | project                                                                      |            |
| 4   | Create a GitHub Actions workflow for automated testing and build             | CO2, CO3   |
| 5   | Write a Dockerfile and build/run a Docker container locally                  | CO3        |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

| 6  | Integrate Docker with CI (build Docker image in Jenkins or GitHub Actions)                              | CO3       |
|----|---------------------------------------------------------------------------------------------------------|-----------|
| 7  | Deploy a sample web app to Heroku or Netlify using a CI/CD pipeline                                     | CO3       |
| 8  | Integrate SonarQube for code quality analysis in the pipeline                                           | CO3, CO4  |
| 9  | Use a basic monitoring tool (like Prometheus or StatusCake) for health                                  | CO4       |
|    | checks                                                                                                  |           |
| 10 | Schedule nightly builds with Jenkins or GitHub Actions cron trigger                                     | CO2, CO3  |
| 11 | Use GitHub Secrets to manage API tokens or passwords securely in work-                                  | CO3       |
|    | flows                                                                                                   |           |
| 12 | <b>Capstone:</b> Implement full CI/CD for a sample project (code $\rightarrow$ build $\rightarrow$ test | CO2, CO3, |
|    | $\rightarrow$ deploy)                                                                                   | CO4       |

#### **Text Books**

- 1. Humble, Jez, and David Farley. *Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation*. Addison-Wesley, 2010.
- 2. Kim, Gene, Jez Humble, Patrick Debois, and John Willis. *The DevOps Handbook: How to Create World-Class Agility, Reliability, & Security*. IT Revolution Press, 2016.

#### **Reference Books**

- 1. Pathania, Nikhil. Learning Continuous Integration with Jenkins. Packt Publishing, 2017.
- 2. Poulton, Nigel. Docker Deep Dive. Leanpub, 2020.

#### E Books

- 1. Google SRE Team. Site Reliability Engineering. O'Reilly Media, 2016. Available at sre.google/books
- 2. Jenkins Community. *Jenkins User Handbook*. Jenkins.io, n.d. https://www.jenkins.io/doc/book/

## E-links

- 1. GitHub. GitHub Actions Documentation. GitHub Docs, n.d. https://docs.github.com/en/actions
- 2. FreeCodeCamp. *CI/CD Blog Tutorials & Guides*. FreeCodeCamp, n.d. https://www.freecodecamp.org/news/tag/cicd/



| I       | Indira College of Engineering and Management (An autonomous Institute) |         |   |                |                     | ous Institute) |
|---------|------------------------------------------------------------------------|---------|---|----------------|---------------------|----------------|
| Sec     | Second Year of Artificial Intellige                                    |         |   | nce and Data S | Science Engineering | (2024 Course)  |
| Course  | se SEC-III GitLab Continuous                                           |         |   | Code           | 24UAIP404 B         |                |
|         | Integration/ Deployment                                                |         |   |                |                     |                |
|         | Framework                                                              |         |   |                |                     |                |
| Credits | 2                                                                      | Pr/week | 4 | Evaluation     | Theory              | Practical      |
|         |                                                                        |         |   | Scheme         | TAE/CAE/ESE         | INT/EXT        |
|         |                                                                        | Th/week |   |                |                     | 25             |

Prerequisite: Familiarity with GitLab, Git commands, YAML syntax, and basic scripting

# **Course Objective:**

| 1 | To provide in-depth knowledge of GitLab's CI/CD pipelines.               |
|---|--------------------------------------------------------------------------|
| 2 | To Automate build, test, and deployment phases within GitLab.            |
| 3 | To Configure advanced CI/CD features like runners, cache, triggers, etc. |
| 4 | To provide in-depth knowledge of GitLab's CI/CD pipelines.               |

| CO  | CO Statement                                                    | Bloom's Level   |
|-----|-----------------------------------------------------------------|-----------------|
| CO1 | Describe GitLab architecture and pipeline features              | Remember (L1),  |
|     |                                                                 | Understand (L2) |
| CO2 | Build and customize GitLab CI/CD pipelines using .gitlab-ci.yml | Apply (L3)      |
| CO3 | Manage GitLab Runners and pipeline environments                 | Apply (L3),     |
|     |                                                                 | Analyze (L4)    |
| CO4 | Troubleshoot pipeline failures and optimize for performance     | Analyze (L4),   |
|     |                                                                 | Evaluate (L5)   |

| Lab | Lab Assignment Description                                                |
|-----|---------------------------------------------------------------------------|
| No. |                                                                           |
| 1   | Create a GitLab project and commit sample code                            |
| 2   | Install and register a GitLab Runner (shared or shell-based)              |
| 3   | Write a simple .gitlab-ci.yml file with build and test stages             |
| 4   | Add environment variables and secrets to GitLab and use them in pipelines |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

| 5  | Set up caching and artifacts in GitLab pipeline                                          |
|----|------------------------------------------------------------------------------------------|
| 6  | Integrate Docker build and push to Docker Hub using GitLab CI                            |
| 7  | Configure manual jobs and conditional job execution (e.g., only on main branch)          |
| 8  | Implement a GitLab CI/CD pipeline that runs tests and deploys to Heroku                  |
| 9  | Debug a failed pipeline and fix the issue (e.g., script error, permission denied, etc.)  |
| 10 | Use GitLab's built-in code quality and security scanning features                        |
| 11 | Setup GitLab Pages to deploy a static website using CI/CD                                |
| 12 | <b>Capstone:</b> Design a multi-stage GitLab CI/CD pipeline with complete build → test → |
|    | deploy → notify                                                                          |

#### **Text Books**

- 1. **Rike, Christopher** (2019). GitLab CI: The Beginner's Guide to Continuous Integration and Delivery using GitLab. Self-published.
- 2. Martin, Jonathan Lee (2013). GitLab Repository Management. Packt Publishing.

#### Reference Books

1. van Baarsen, Jeroen (2014). GitLab Cookbook. Packt Publishing

#### E Books

- 1. The official *GitLab CI/CD Documentation* is available at <u>docs.gitlab.com</u>, providing comprehensive information on writing .gitlab-ci.yml files, runners, environments, and more.
- 2. GitLab Learning Portal offers free learning paths and certifications at <u>learn.gitlab.com</u>.

#### E Links

- 1. Dev.to's GitLab tag (at dev.to/t/gitlab) features community-generated tutorials, from beginner to advanced levels.
- 2. *Medium.com* hosts a wide collection of blog articles and tutorials on GitLab CI/CD written by DevOps practitioners.



|         | Indira College of Engineering and Management (An autonomous Institute)            |         |   |            |             |           |
|---------|-----------------------------------------------------------------------------------|---------|---|------------|-------------|-----------|
| S       | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |             |           |
| Course  | SEC-III Azure DevOps                                                              |         |   | Code       | 24UAIP404 C |           |
| Credits | 2                                                                                 | Pr/week | 4 | Evaluation | Theory      | Practical |
|         |                                                                                   |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |
|         |                                                                                   | Th/week |   |            |             | 25        |

Prerequisite: Prior experience with Git, Azure fundamentals & application development concept

# **Course Objective:**

| 1 | To learn how to use Azure DevOps for end-to-end software delivery. |
|---|--------------------------------------------------------------------|
| 2 | To Create and manage pipelines, boards, repos, and artifacts.      |
| 3 | To Deploy the applications using Azure Pipelines and integrations. |
| 4 | To Monitor and manage deployments on Azure Cloud.                  |

| CO  | CO Statement                                                        | Bloom's Level                |
|-----|---------------------------------------------------------------------|------------------------------|
| CO1 | Understand core components of Azure DevOps                          | Understand (L2)              |
| CO2 | Create and manage build and release pipelines using Azure Pipelines | Apply (L3)                   |
| CO3 | Integrate Boards, Repos, Artifacts, and Test Plans                  | Apply (L3),<br>Analyze (L4)  |
| CO4 | Deploy applications to Azure and evaluate pipeline metrics          | Apply (L3),<br>Evaluate (L5) |

| Lab<br>No. | Lab Assignment Description                                      |
|------------|-----------------------------------------------------------------|
| 1          | Create an Azure DevOps organization and project                 |
| 2          | Setup Azure Repos and push a sample codebase                    |
| 3          | Create a basic build pipeline using YAML                        |
| 4          | Integrate unit testing (e.g., NUnit, Mocha) into build pipeline |

Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

| 5  | Create a release pipeline to deploy an app to Azure App Service                    |
|----|------------------------------------------------------------------------------------|
| 6  | Use Azure Boards to create and manage work items/tasks                             |
| 7  | Publish and consume packages using Azure Artifacts                                 |
| 8  | Set up pipeline to deploy Docker container to Azure Container Registry             |
| 9  | Enable logging and monitoring with Azure Monitor and Application Insights          |
| 10 | Integrate Azure Test Plans for manual and automated test management                |
| 11 | Add deployment approval gates and conditions in Azure release pipelines            |
| 12 | Capstone: Create full CI/CD pipeline for a sample web app using Azure DevOps tools |

#### **Reference Books**

- 1. Zaal, Sjoukje. Azure DevOps Explained: Get Started with Azure DevOps and Develop Your DevOps Practices. Packt Publishing, 2020.
- 2. Soni, Mitesh. Implementing DevOps with Microsoft Azure. Packt Publishing, 2017.

#### **Text Books**

1. Chandrasekara, Chaminda, and Pushpa Herath. Professional Azure DevOps. Apress, 2020.

#### E Books

- 1. Microsoft. *Azure DevOps Learning Path*. Microsoft Learn, n.d. <a href="https://learn.microsoft.com/en-us/training/paths/devops-fundamentals/">https://learn.microsoft.com/en-us/training/paths/devops-fundamentals/</a>
- 2. Microsoft. *Azure DevOps Documentation*. Microsoft Docs, n.d. <a href="https://learn.microsoft.com/en-us/azure/devops/">https://learn.microsoft.com/en-us/azure/devops/</a>

#### E Links

- 1. Hanselman, Scott. Azure Friday (Video Series). Microsoft/Azure YouTube Channel, n.d.
- 2. Packt Publishing. *Packt Free Learning Library*. Packt Publishing, n.d. https://www.packtpub.com/free-learning



001

## INDIRA COLLEGE OF ENGINEERING AND MANAGEMENT

Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

|         | Indira College of Engineering and Management (An autonomous Institute)            |                                           |   |            |             |           |
|---------|-----------------------------------------------------------------------------------|-------------------------------------------|---|------------|-------------|-----------|
|         | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                                           |   |            |             |           |
| Course  | Moder                                                                             | Modern Office (Life Skill) Code 24UBSP407 |   |            |             |           |
|         | Management                                                                        |                                           |   |            |             |           |
| Credits | 2                                                                                 | Pr/week                                   | 4 | Evaluation | Theory      | Practical |
|         |                                                                                   |                                           |   | Scheme     | TAE/CAE/ESE | INT/EXT   |
|         |                                                                                   | Th/week                                   |   |            |             | 25        |

**Prerequisite:** A basic understanding of workplace behavior and communication. - Openness to learning professional skills for effective functioning in a modern work environment.

# **Course Objective:**

| 1 | To equip students with essential communication and interpersonal skills for professional           |
|---|----------------------------------------------------------------------------------------------------|
|   | environments.                                                                                      |
| 2 | To develop practical understanding of professional etiquette and ethical behavior.                 |
| 3 | To build competencies in teamwork, time management, and conflict resolution.                       |
| 4 | To foster skills for personal growth, adaptability, and workplace resilience.                      |
| 5 | To prepare the students for effective functioning and career progression in modern office settings |

| CO  | CO Statement                                                             | Bloom's Level   |
|-----|--------------------------------------------------------------------------|-----------------|
| CO1 | Demonstrate effective verbal, non-verbal, and digital communication in   | Apply (L3)      |
|     | workplace scenarios.                                                     |                 |
| CO2 | Practice professional behavior, ethical responsibility, and etiquette in | Apply (L3),     |
|     | office environments.                                                     | Understand (L2) |
| CO3 | Collaborate in team settings and apply conflict resolution strategies.   | Apply (L3),     |
|     |                                                                          | Analyze (L4)    |
| CO4 | Organize tasks, manage time, and maintain workplace productivity and     | Apply (L3)      |
|     | safety.                                                                  |                 |
| CO5 | Develop a personal growth plan using career skills like goal setting,    | Create (L6),    |
|     | networking, and adaptability.                                            | Evaluate (L5)   |



| Sr. No | List of Practical Assignments (Any 10)                                            |
|--------|-----------------------------------------------------------------------------------|
| 1      | Design a modern office layout using digital or physical tools.                    |
| 2      | Draft a formal business letter and email for a professional context.              |
| 3      | Prepare an agenda and minutes of a simulated office meeting.                      |
| 4      | Create a document filing and indexing system for office records.                  |
| 5      | Format a professional report using word processing software.                      |
| 6      | Use spreadsheets to perform basic data entry, calculations, and charting.         |
| 7      | Develop a short presentation on a business topic with visuals and transitions.    |
| 8      | Maintain a weekly time log and analyze productivity patterns.                     |
| 9      | Participate in a group task to simulate teamwork and task delegation.             |
| 10     | Role-play common professional interactions to demonstrate workplace etiquette.    |
| 11     | Develop a basic cybersecurity and data protection checklist for office use.       |
| 12     | Create an office manual with communication protocols and digital tool guidelines. |
| 13     | Simulate a virtual meeting using tools like Zoom or Google Meet and demonstrate   |
|        | meeting protocols.                                                                |
| 14     | Create a personal development plan using SWOT analysis for career planning.       |
| 15     | Prepare a visual flowchart or process diagram of office workflows (e.g., document |
|        | approval, meeting scheduling).                                                    |

#### **Reference Books**

- 1. Aulet, Bill. Disciplined Entrepreneurship: 24 Steps to a Successful Startup. Wiley, 2013.
- 2. Bhatia, R.C. Modern Office Management. Atlantic Publishers, 2008.
- 3. Chopra, R.K. *Office Management: Developing Skills for Smooth Functioning*. Himalaya Publishing House, 2010.
- **4.** Andrews, Sudhir. *Effective Office Management*. Tata McGraw-Hill, 2009.
- 5. Harvard Business Review. *HBR's 10 Must Reads on Entrepreneurship and Startups*. Harvard Business Review Press, 2020.
- 6. Arora, S.P. Office Organization and Management. Vikas Publishing, 2011.
- 7. Ghosh, P.K. Office Management. Sultan Chand & Sons, 2012.

## **Text Books**

- 1. Jain, S.C. *Office Management and Commercial Correspondence*. Kalyani Publishers, 2015.
- 2. Pillai, R.S.N., and Bagavathi. *Modern Office Practice and Management*. S. Chand Publishing, 2016.
- 3. Sinha, P.K. Office Management. Swastik Publications, 2014.

#### E Books

- 1. Wilson, Kevin. *Microsoft Office 365 Essentials: Get up and Running with Microsoft Office 365*. Apress, 2018.
- 2. Meeuwisse, Raef. *Cybersecurity for Beginners*. Cyber Simplicity, 2017.
- 3. Thiel, Peter. Zero to One: Notes on Startups, or How to Build the Future. Crown Business, 2014.



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

- 4. Blank, Steve, and Bob Dorf. *The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company*. K&S Ranch, 2012.
- 5. Drucker, Peter F. *The Effective Executive: The Definitive Guide to Getting the Right Things Done.* HarperBusiness, 2006.

#### E- Links

- 1. GCF Learn Free Microsoft Office Tutorials: https://edu.gcfglobal.org/en/
- 2. Canva Create presentations and office manuals: <a href="https://www.canva.com/">https://www.canva.com/</a>
- 3. Trello Online task and workflow management: https://trello.com/
- 4. Coursera Work Smarter, Not Harder (Productivity Course): <a href="https://www.coursera.org/learn/work-smarter-not-harder">https://www.coursera.org/learn/work-smarter-not-harder</a>
- 5. SlideCarnival Free PowerPoint & Google Slide Templates: https://www.slidescarnival.com/
- 6. Zoom Help Center Virtual Meeting Guidelines: https://support.zoom.us/hc/en-us
- 7. Google Workspace Learning Center: https://support.google.com/a/users





Parandwadi, Pune – 410506, Ph. 02114 661500, <u>www.indiraicem.ac.in</u>

|         | Indira College of Engineering and Management (An autonomous Institute)            |                                 |   |            |             |           |
|---------|-----------------------------------------------------------------------------------|---------------------------------|---|------------|-------------|-----------|
| Se      | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                                 |   |            |             |           |
| Course  | En                                                                                | Entrepreneurship Code 24UESP408 |   |            |             |           |
|         | Essentials II                                                                     |                                 |   |            |             |           |
| Credits | 2                                                                                 | Pr/week                         | 4 | Evaluation | Theory      | Practical |
|         |                                                                                   |                                 |   | Scheme     | TAE/CAE/ESE | INT/EXT   |
|         |                                                                                   | Th/week                         |   |            |             | 25        |

**Prerequisite:** A basic understanding of workplace behavior and communication. - Openness to learning professional skills for effective functioning in a modern work environment.

# **Course Objective:**

| 1 | To deepen students' understanding of startup growth, innovation, and funding mechanisms. |
|---|------------------------------------------------------------------------------------------|
| 2 | To enable students to design scalable business strategies and navigate competitive       |
|   | landscapes.                                                                              |
| 3 | To provide knowledge of global entrepreneurship, digital transformation, and advanced    |
|   | financial tools.                                                                         |
| 4 | To introduce students to incubators, accelerators, and pitching competitions.            |
| 5 | To promote strategic thinking in team building, stakeholder engagement, and sustainable  |
|   | entrepreneurship.                                                                        |

| CO  | CO Statement                                                                  | Bloom's Level               |
|-----|-------------------------------------------------------------------------------|-----------------------------|
| CO1 | Understand global and digital trends in entrepreneurship                      | Understand(L2)              |
| CO2 | Analyze advanced startup strategies including scaling and funding             | Analyze(L4)                 |
| CO3 | Design investor-ready startup pitches and strategic roadmaps                  | Create(L6)                  |
| CO4 | Evaluate the role of incubators, accelerators, and government support schemes | Evaluate(L3)                |
| CO5 | Apply sustainable, ethical, and inclusive practices in business growth        | Apply(L3),<br>Evaluate (L5) |



| Sr.<br>No. | Title of Practical                                                                               | COs<br>Mapped       |
|------------|--------------------------------------------------------------------------------------------------|---------------------|
| 1          | Analyze an innovative startup's design thinking approach (case-based assignment)                 | CO1                 |
| 2          | Conduct a design sprint: From problem statement to prototype                                     | CO1,<br>CO2         |
| 3          | Develop and compare scaling strategies for two different business models                         | CO2                 |
| 4          | Prepare a competitive positioning map for a selected startup idea                                | CO2                 |
| 5          | Draft a financial plan with valuation and cap table for a startup                                | CO3                 |
| 6          | Create and present a pitch deck targeting angel investors or venture capitalists                 | CO3,<br>CO4         |
| 7          | Compare funding schemes from Startup India and global incubators                                 | CO4                 |
| 8          | Prepare a report on government schemes (e.g., AIM, SIDBI) and how startups can leverage them     | CO4                 |
| 9          | Identify and plan for sustainable practices within a business model (e.g., ESG inclusion)        | CO5                 |
| 10         | Develop a strategy for inclusive hiring and ethical scaling for a startup                        | CO5                 |
| 11         | Create a plan to enter an international market: legal, cultural, and strategic considerations    | CO1,<br>CO4         |
| 12         | Evaluate a real pitch from Shark Tank or similar programs and critique using investment criteria | CO3,<br>CO4         |
| 13         | Participate in or simulate an incubator/accelerator pitch bootcamp                               | CO2,<br>CO3,<br>CO4 |

#### **Reference Books**

- 1. Aulet, Bill. Disciplined Entrepreneurship: 24 Steps to a Successful Startup. Wiley, 2013.
- 2. Kim, W. Chan, and Renée Mauborgne. *Blue Ocean Strategy: How to Create Uncontested Market Space and Make the Competition Irrelevant*. Harvard Business Review Press, 2015.
- 3. Christensen, Clayton M. *The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail.* Harvard Business Review Press, 2016.
- **4.** Bornstein, David, and Susan Davis. *Social Entrepreneurship: What Everyone Needs to Know.* Oxford University Press, 2010.
- 5. Harvard Business Review. *HBR's 10 Must Reads on Entrepreneurship and Startups*. Harvard Business Review Press, 2020.

#### **Text Books**

- 1. **Bill Aulet**, Disciplined Entrepreneurship: 24 Steps to a Successful Startup, Wiley, 2013.
- 2. **Eric Ries**, The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses, Crown Business, 2011



3. **Peter F. Drucker**, *Innovation and Entrepreneurship*, Harper Business, Revised Edition, 2006

#### E Books

- 1. Blank, Steve, and Bob Dorf. *The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company.* K & S Ranch, 2012.
- 2. Thiel, Peter, with Blake Masters. Zero to One: Notes on Startups, or How to Build the Future. Crown Business, 2014.
- 3. Government of India. *Startup India Learning Program*. Available online at startupindia.gov.in
- 4. **Steve Blank** and **Bob Dorf**, *The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company*, K&S Ranch, 2012.

   Available on Internet Archive
- 5. **Peter Thiel** with **Blake Masters**, Zero to One: Notes on Startups, or How to Build the Future, Crown Business, 2014.
  - Amazon eBook
- 6. **Poornima M. Charantimath**, Entrepreneurship Development and Small Business Enterprises, Pearson Education, 2018.

   Available on academic e-libraries like Pearson eLibrary or Google Books

#### **E** Links

- 1. Startup India Learning Program https://www.startupindia.gov.in
- 2. Atal Innovation Mission (AIM) <a href="https://aim.gov.in">https://aim.gov.in</a>
- 3. **Harvard Online: Entrepreneurial Strategy** https://online.hbs.edu/courses/entrepreneurial-strategy/
- **4.** Coursera Digital Transformation in Business <a href="https://www.coursera.org">https://www.coursera.org</a>



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

|         | Indira College of Engineering and Management (An autonomous Institute)            |         |   |            |             |           |
|---------|-----------------------------------------------------------------------------------|---------|---|------------|-------------|-----------|
|         | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |   |            |             |           |
| Course  | VEC II (Environmental Code 24UVEP409 A                                            |         |   |            |             |           |
|         | Awareness)                                                                        |         |   |            |             |           |
| Credits | 2                                                                                 | Pr/week | 4 | Evaluation | Theory      | Practical |
|         |                                                                                   |         |   | Scheme     | TAE/CAE/ESE | INT/EXT   |
|         |                                                                                   | Th/week |   |            | 10/15/      | 25        |

Prerequisite: Basic understanding of Indian history and political science.

# **Course Objective:**

| 1 | To introduce the multidisciplinary nature and scope of environmental studies.                                  |
|---|----------------------------------------------------------------------------------------------------------------|
| 2 | To understand ecosystem structures, biodiversity, and ecological balance through                               |
|   | hands-on observation and documentation.                                                                        |
| 3 | To examine the use and impact of natural resources on environmental sustainability.                            |
| 4 | To explore biodiversity conservation practices and develop eco-sensitive thinking through field-based inquiry. |

| CO  | CO statement                                                                              | Bloom's Level   |
|-----|-------------------------------------------------------------------------------------------|-----------------|
| CO1 | Illustrate the interdependence of ecosystems through activity-based exploration           | Understand (L2) |
| CO2 | Analyze the role of natural resources in sustainable development using real-world data.   | Analyze (L4)    |
| CO3 | Investigate biodiversity threats and conservation strategies through surveys and projects | Analyze(L4)     |
| CO4 | Create awareness tools or reports promoting sustainability based on their findings.       | Create (L6)     |



# **List of Assignments:**

| Week | Topic to be covered                                                                                |
|------|----------------------------------------------------------------------------------------------------|
| 1    | Introduction Workshop: Group discussion and poster making on "Why Environmental                    |
|      | Studies Matter for Technologists"                                                                  |
|      |                                                                                                    |
| 2    | <b>Eco Mapping</b> : Identify and document elements of an ecosystem within the college campus      |
| 3    | Model the Food Web: Create food chains and food webs using flowcharts (digital tools               |
|      | like Canva / Lucidchart)                                                                           |
| 4    | Case Study Review: Present real-world examples of forest, grassland, and aquatic                   |
|      | ecosystems                                                                                         |
| 5    | Soil and Water Testing Activity: Test soil pH, water quality (use school-level kits), and          |
|      | interpret results                                                                                  |
| 6    | Field Visit / Virtual Tour: Document deforestation or mining impact in a chosen region;            |
|      | students prepare a comparative report                                                              |
| 7    | Water Audit Exercise: Estimate water usage at home/hostel and identify areas of                    |
|      | overuse; propose conservation measures                                                             |
| 8    | Renewable Energy Models: Create a simple model or PPT on any renewable energy                      |
|      | source (e.g., solar cooker, wind energy demo)                                                      |
| 9    | <b>Biodiversity Documentation</b> : Survey nearby areas for plant/animal species; identify any     |
|      | endemic/endangered species                                                                         |
| 10   | Conservation Proposal Pitch: In groups, students prepare a mini proposal for                       |
|      | biodiversity conservation at local level                                                           |
| 11   | Group Project Work: Work on mini project report/documentation on any                               |
|      | ecosystem/natural resource topic                                                                   |
| 12   | <b>Presentation &amp; Viva</b> : Final presentation and oral examination based on project work and |
|      | learning portfolio                                                                                 |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

# Reference Book

- 1. Odum, Eugene P. "Fundamentals of Ecology"
- 2. R.Rajagopalan, "Environmental Studies From Crisis to Cure", Oxford

#### **Text Book**

- 1. Erach Bharucha, "Textbook of Environmental Studies", UGC
- 2. Anubha Kaushik and C.P. Kaushik, "Environmental Studies", New Age International

#### E-Links

- 1. <a href="https://www.unep.org">https://www.unep.org</a>
- 2. https://nptel.ac.in/courses/
- 3. https://www.environment.gov.in



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

| Indira College of Engineering and Management (An autonomous Institute) |                                                                                   |         |      |             |             |           |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------|------|-------------|-------------|-----------|
|                                                                        | Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |         |      |             |             |           |
| Course                                                                 | Philosophy and Wisdom<br>Traditions                                               |         | Code | 24UVEP409 B |             |           |
| Credits                                                                | 2                                                                                 | Pr/week | 4    | Evaluation  | Theory      | Practical |
|                                                                        |                                                                                   |         |      | Scheme      | TAE/CAE/ESE | INT/EXT   |
|                                                                        |                                                                                   | Th/week |      |             | 10/15/      | 25        |

**Prerequisite:** Basic understanding of personal values, general awareness of Indian culture and society, and foundational communication skills.

# **Course Objective:**

| 1 | To cultivate ethical awareness and moral reasoning in both personal and professional life. |  |  |
|---|--------------------------------------------------------------------------------------------|--|--|
| 2 | To introduce Indian philosophical thought and its relevance to modern-day challenges.      |  |  |
| 3 | To explore the ethical implications of science, technology, and innovation.                |  |  |
| 4 | To nurture leadership, teamwork, and value-based entrepreneurship.                         |  |  |

| CO  | CO statement                                                                    | Bloom's Level   |
|-----|---------------------------------------------------------------------------------|-----------------|
| CO1 | Demonstrate an understanding of ethical principles and Indian ethos.            | Understand (L2) |
| CO2 | Apply the teachings of Indian thinkers to evaluate modern-day ethical dilemmas. | Apply (L3)      |
| CO3 | Analyze the societal impact of technology and sustainable development.          | Analyze (L4),   |
| CO4 | Develop value-based leadership, teamwork, and innovation strategies.            | Create (L6)     |



# **List of Assignments:**

| Week | Topic to be covered                         | Activity                                                                                 |
|------|---------------------------------------------|------------------------------------------------------------------------------------------|
| 1    | Introduction to Value Education             | Group discussion on "What are values?" & storytelling around personal value dilemmas.    |
| 2    | Indian Ethos                                | Role play: Practicing truth, dharma, and karma in simulated situations.                  |
| 3    | Thinkers: Kanad & Kapila                    | Create a visual timeline or mind map reflecting scientific inquiry and systems thinking. |
| 4    | Critical Thinking & Curiosity               | Debate on "Knowledge vs Information." Case analysis from Indian scriptures.              |
| 5    | Self-Discipline & Integrity                 | Personal Journaling Activity                                                             |
| 6    | Thinkers: Adi Shankaracharya & Basaveshwara | Podcast creation (group) on social . equality or logic and reasoning.                    |
| 7    | Science and Ethics                          | Case study: AI ethics, social media algorithms, and privacy.                             |
| 8    | Sustainable Development                     | Simulation: Build a mini-project plan with ethical and green principles.                 |
| 9    | Thinkers: Aryabhata & Nagarjuna             | Poster making or video project on scientific innovation with responsibility.             |
| 10   | Nationhood & Social Reform                  | Skit or street play: Unity in diversity and equality in India.                           |
| 11   | Social Justice and Engineering              | Panel discussion: Role of AI in inclusive development.                                   |
| 12   | Thinkers: M. Visvesvaraya & Homi<br>Bhabha  | Timeline creation and presentation on India's engineering milestones.                    |
| 13   | Leadership and Teamwork                     | Leadership challenge activity or peer-led workshops.                                     |
| 14   | Innovation & Entrepreneurship               | Design a startup pitch with ethical impact at its core.                                  |
| 15   | Reflective Assignment + Viva                | Final reflections, report submission, viva on learning outcomes                          |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

#### Reference Book

- 1. Kapila Vatsyayan The Indian Mind: Essentials of Indian Philosophy and Culture.
- 2. M.K. Gandhi My Experiments with Truth.

#### **Text Book**

- 3. R.R. Gaur, R. Sangal, G.P. Bagaria A Foundation Course in Human Values and Professional Ethics, Excel Books.
- 4. Swami Vivekananda Selections from the Complete Works.
- 5. Dr. Kalam, A.P.J. Ignited Minds.

#### E-Links

- 1. https://nptel.ac.in/courses/109104115 NPTEL Course on Human Values
- 2. https://epgp.inflibnet.ac.in/ E-PG Pathshala
- 3. SWAYAM Political Science Courses



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

| Indira College of Engineering and Management (An autonomous Institute)            |                                    |         |             |            |             |           |
|-----------------------------------------------------------------------------------|------------------------------------|---------|-------------|------------|-------------|-----------|
| Second Year of Artificial Intelligence and Data Science Engineering (2024 Course) |                                    |         |             |            |             |           |
| Course                                                                            | Foundations of Ethical Living Code |         | 24UVEP409 C |            |             |           |
| Credits                                                                           | 2                                  | Pr/week | 4           | Evaluation | Theory      | Practical |
|                                                                                   |                                    |         |             | Scheme     | TAE/CAE/ESE | INT/EXT   |
|                                                                                   |                                    | Th/week |             |            | 10/15/      | 25        |

# **Prerequisite:**

- 1. Basic understanding of Indian history and philosophy
- 2. Willingness to reflect on personal and professional values

# **Course Objective:**

| 1 | To introduce core ethical values and Indian philosophical thought.                            |  |  |  |
|---|-----------------------------------------------------------------------------------------------|--|--|--|
| 2 | To enable critical thinking about the role of ethics in technology and leadership.            |  |  |  |
| 3 | To develop empathy, integrity, and social responsibility through experiential learning.       |  |  |  |
| 4 | To inspire students to apply ethical principles in personal and professional decision-making. |  |  |  |

| СО  | CO statement                                                                                         | Bloom's Level |
|-----|------------------------------------------------------------------------------------------------------|---------------|
| CO1 | Describe key ethical values and Indian philosophical teachings relevant to professional life.        | Remember (L1) |
| CO2 | Analyze the role of ethics in science, technology, and society through historical and modern lenses. | Analyze (L4)  |
| CO3 | Apply ethical reasoning to case studies and real-life professional scenarios.                        | Apply(L3)     |
| CO4 | Develop personal and team-based projects reflecting ethical leadership and social responsibility.    | Create (L6)   |



# **List of Assignments:**

| Week | Topic to be covered                                          | Activity                                                           |  |  |
|------|--------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| 1    | Introduction to Value Education                              | Self-awareness journaling, group discussion on personal values     |  |  |
| 2    | The Indian Ethos: Truth, Non-Violence, Dharma, Karma         | Poster-making and storytelling activity around Indian thinkers     |  |  |
| 3    | Scientific Inquiry (Maharshi Kanad, Kapila)                  | Debate: "Are scientific values ethical values?"                    |  |  |
| 4    | Knowledge, Self-Discipline, and Integrity                    | Reflection essays: "My Role Model of Integrity"                    |  |  |
| 5    | Social Equality and Inclusivity (Basaveshwara)               | Simulation activity: Privilege walk or role-play                   |  |  |
| 6    | Ethics in Technology and Engineering                         | Case Study: Facial recognition, AI Bias, Surveillance              |  |  |
| 7    | Environmental Responsibility and Sustainable Thinking        | Field visit or online docu-screening + reflective write-up         |  |  |
| 8    | Nationhood, Engineering for Inclusion (Visvesvaraya, Bhabha) | Group project planning: "Engineering for Social Good"              |  |  |
| 9    | Leadership and Teamwork (Ratan Tata, A.P.J. Abdul Kalam)     | Team-based leadership challenge (Role-play, Time-bound tasks)      |  |  |
| 10   | Innovation and Entrepreneurship with Ethics                  | Innovation Pitch: Students present ethical startups or AI projects |  |  |
| 11   | Project Work                                                 | Compilation of all assignments and project execution               |  |  |
| 12   | Presentation + Viva                                          | Team presentations, peer feedback, and oral assessment             |  |  |



Parandwadi, Pune – 410506, Ph. 02114 661500, www.indiraicem.ac.in

001

# Reference Book

- 1. "The Story of My Experiments with Truth" by Mahatma Gandhi
- 2. "Ignited Minds" by A.P.J. Abdul Kalam
- 3. "The Ethical Engineer" by Robert McGinn

## **Text Book**

- 1. "Ethics in Engineering" by Mike Martin & Roland Schinzinger.
- 2. "Value Education and Professional Ethics" by R.R. Gaur, R. Sangal, and G.P. Bagaria

## E-Links

- 1. Stanford Encyclopedia of Philosophy
- 2. AI Ethics Case Studies Harvard